Question
Question: If in ∆ABC, \(\frac{a\cos A + b\cos B + c\cos C}{a\sin B + b\sin C + c\sin A} = \frac{a + b + c}{9R}...
If in ∆ABC, asinB+bsinC+csinAacosA+bcosB+ccosC=9Ra+b+c then the
triangle ABC is
A
Isosceles
B
Equilateral
C
Right angled
D
None of these
Answer
Equilateral
Explanation
Solution
LHS 2Rab+2Rbc+2Rca=ab+bc+ca2R2(Σsin2A)Σ2RsinAcosA
⇒Σab2R2.4sinAsinBsinC=9Ra+b+c
9abc = (a + b + c) (ab + bc + ca) or a(b – c)2 + b(c – a)2 +
c(a – b)2 = 0 ⇒ a = b = c