Solveeit Logo

Question

Question: If in ∆ABC, \(\frac{a\cos A + b\cos B + c\cos C}{a\sin B + b\sin C + c\sin A} = \frac{a + b + c}{9R}...

If in ∆ABC, acosA+bcosB+ccosCasinB+bsinC+csinA=a+b+c9R\frac{a\cos A + b\cos B + c\cos C}{a\sin B + b\sin C + c\sin A} = \frac{a + b + c}{9R} then the

triangle ABC is

A

Isosceles

B

Equilateral

C

Right angled

D

None of these

Answer

Equilateral

Explanation

Solution

LHS Σ2RsinAcosAab2R+bc2R+ca2R=2R2(Σsin2A)ab+bc+ca\frac{\Sigma 2R\sin A\cos A}{\frac{ab}{2R} + \frac{bc}{2R} + \frac{ca}{2R} = \frac{2R^{2}(\Sigma\sin 2A)}{ab + bc + ca}}

2R2.4sinAsinBsinCΣab=a+b+c9R\frac{2R^{2}.4\sin A\sin B\sin C}{\Sigma ab} = \frac{a + b + c}{9R}

9abc = (a + b + c) (ab + bc + ca) or a(b – c)2 + b(c – a)2 +

c(a – b)2 = 0 ⇒ a = b = c