Solveeit Logo

Question

Mathematics Question on Arithmetic Progression

If in a \triangle PQR, sin P, sin Q, sin R are in AP, then

A

the altitudes are in AP

B

the altitudes are in HP

C

the medians are in GP

D

the medians are in AP

Answer

the altitudes are in HP

Explanation

Solution

By the law of sine rule,
asin P=bsin Q=csin R=k\frac{a}{ sin \ P } = \frac{b}{ sin \ Q} = \frac{ c}{ sin \ R } = k [ say]
Also, 12,ap1=2α=p1 \frac{1}{2}, ap_1 = \triangle \Rightarrow \frac{ 2 \\\triangle }{\alpha} = p_1
p1=2k sin P\Rightarrow p_1 = \frac{2 \triangle }{ k \ sin \ P }
Similarly, p2=2k sin Q and p3=2k sin R p_2 = \frac{ 2 \triangle }{ k \ sin \ Q } \ and \ p_3 = \frac{2 \triangle }{ k \ sin \ R }
Since, sin P, sin Q and sin R are in AP, hence p1,p2,p3p_1, p_2, p_3
are in HP.