Solveeit Logo

Question

Question: If in a triangle \(\overset{\rightarrow}{AB} = \mathbf{a},\overset{\rightarrow}{AC} = \mathbf{b}\) a...

If in a triangle AB=a,AC=b\overset{\rightarrow}{AB} = \mathbf{a},\overset{\rightarrow}{AC} = \mathbf{b} and D, E are the mid-points of AB and AC respectively, then DE\overset{\rightarrow}{DE} is equal to

A

a4b4\frac{\mathbf{a}}{4} - \frac{\mathbf{b}}{4}

B

a2b2\frac{\mathbf{a}}{2} - \frac{\mathbf{b}}{2}

C

b4a4\frac{\mathbf{b}}{4} - \frac{\mathbf{a}}{4}

D

b2a2\frac{\mathbf{b}}{2} - \frac{\mathbf{a}}{2}

Answer

b2a2\frac{\mathbf{b}}{2} - \frac{\mathbf{a}}{2}

Explanation

Solution

We know by fundamental theorem of proportionality that DE=12BC\overset{\rightarrow}{DE} = \frac{1}{2}\overset{\rightarrow}{BC}

In triangle, BC=ba\overset{\rightarrow}{BC} = \mathbf{b} - \mathbf{a}; Hence, DE=12(ba)\overset{\rightarrow}{DE} = \frac{1}{2}(\mathbf{b} - \mathbf{a}).