Solveeit Logo

Question

Question: If in a triangle \(A B C\), <img src="https://cdn.pureessence.tech/canvas_486.png?top_left_x=1253&to...

If in a triangle ABCA B C, then 1a+c+1b+c=\frac { 1 } { a + c } + \frac { 1 } { b + c } =

A

1a+b+c\frac { 1 } { a + b + c }

B

2a+b+c\frac { 2 } { a + b + c }

C

3a+b+c\frac { 3 } { a + b + c }

D

None of these

Answer

3a+b+c\frac { 3 } { a + b + c }

Explanation

Solution

cosC=π3a2+b2c2=ab\cos C = \frac { \pi } { 3 } \Rightarrow a ^ { 2 } + b ^ { 2 } - c ^ { 2 } = a b

b2+bc+a2+ac=ab+ac+bc+c2b ^ { 2 } + b c + a ^ { 2 } + a c = a b + a c + b c + c ^ { 2 }

b(b+c)+a(a+c)=(a+c)(b+c)b ( b + c ) + a ( a + c ) = ( a + c ) ( b + c )

Divide by (a+c)(b+c)( a + c ) ( b + c ) and add 2 on both sides