Solveeit Logo

Question

Question: If in a triangle ABC sines of angles A and B satisfy the equation 4 x <sup>2</sup> – 2 \(\sqrt { 6 ...

If in a triangle ABC sines of angles A and B satisfy the

equation 4 x 2 – 2 6\sqrt { 6 } x + 1 = 0, then cos (A – B) is equal to –

A

0

B

1/2

C

1/ 2\sqrt { 2 }

D

3\sqrt { 3 }/2

Answer

1/2

Explanation

Solution

sin A + sin B = 62\frac { \sqrt { 6 } } { 2 }

sin A . sin B = ¼ , Let A > B [Q A ¹ B]

̃ sin2 A + sin2 B + 2 × ¼ = 6/4

̃ sin2 A + sin2 B = 1 ̃ sin2 A = cos2 B,

̃ cos B = sin A ̃ B = 900 – A

̃ A + B = C = 900

Also sin A sin B = cos B sin B = ¼ ,

̃ sin2 B = ½ ̃ 2B = 300 or 1500

̃ B = 150 or 750

̃ B = 150, A = 750, ̃ A – B = 600

̃ cos (A – B) = ½ .