Question
Question: If in a triangle ABC sines of angles A and B satisfy the equation 4 x <sup>2</sup> – 2 \(\sqrt { 6 ...
If in a triangle ABC sines of angles A and B satisfy the
equation 4 x 2 – 2 6 x + 1 = 0, then cos (A – B) is equal to –
A
0
B
1/2
C
1/ 2
D
3/2
Answer
1/2
Explanation
Solution
sin A + sin B = 26
sin A . sin B = ¼ , Let A > B [Q A ¹ B]
̃ sin2 A + sin2 B + 2 × ¼ = 6/4
̃ sin2 A + sin2 B = 1 ̃ sin2 A = cos2 B,
̃ cos B = sin A ̃ B = 900 – A
̃ A + B = C = 900
Also sin A sin B = cos B sin B = ¼ ,
̃ sin2 B = ½ ̃ 2B = 300 or 1500
̃ B = 150 or 750
̃ B = 150, A = 750, ̃ A – B = 600
̃ cos (A – B) = ½ .