Solveeit Logo

Question

Question: If in a triangle ABC, sin A, sin B, sin C are in A.P., then –...

If in a triangle ABC, sin A, sin B, sin C are in A.P., then –

A

The altitudes are in A.P.

B

The altitudes are in H.P.

C

The altitudes are in G.P.

D

The medians are in A.P.

Answer

The altitudes are in H.P.

Explanation

Solution

Let altitudes O from A, B, C be p, q, r, respectively then

p = b sin C

q = c sin A

r = a sin B

∴ p : q : r :: b sin C : c sin A : a sin B

⇒ sin B sin C : sin C sin A : sin A sin B = : 1sinB\frac { 1 } { \sin B }:

1sinC\frac { 1 } { \sin C }

⇒ ∴ sin A, sin B, sin C are in A.P.

⇒ p, q, r are in H.P.