Question
Question: If in a triangle ABC, sin A, sin B, sin C are in A.P., then –...
If in a triangle ABC, sin A, sin B, sin C are in A.P., then –
A
The altitudes are in A.P.
B
The altitudes are in H.P.
C
The altitudes are in G.P.
D
The medians are in A.P.
Answer
The altitudes are in H.P.
Explanation
Solution
Let altitudes O from A, B, C be p, q, r, respectively then
p = b sin C
q = c sin A
r = a sin B
∴ p : q : r :: b sin C : c sin A : a sin B
⇒ sin B sin C : sin C sin A : sin A sin B = : sinB1:
sinC1
⇒ ∴ sin A, sin B, sin C are in A.P.
⇒ p, q, r are in H.P.