Question
Question: If in a triangle \[ABC\] , \[\cos A + \cos B + \cos C = \dfrac{3}{2}\] , then the triangle is A.E...
If in a triangle ABC , cosA+cosB+cosC=23 , then the triangle is
A.Equilateral
B.Isosceles
C.Right angle triangle
D.None of these
Solution
In the given question , we consider a triangle with sides a,b&c , now in any triangle the cosine of any of the angle say (A) is given by cosA=2bcb2+c2−a2 , where a,b&c are the sides of the triangle . So, using these formulas we will find the value of cosB and cosC , then solve it accordingly .
Complete step by step solution:
Given : cosA+cosB+cosC=23
Now using the formula of cosA=2bcb2+c2−a2 we get ,
2bcb2+c2−a2+cosB+cosC=23 ,
Now using the formula for cosB=2bcc2+a2−b2 we get ,
2bcb2+c2−a2+2acc2+a2−b2+cosC=23
Now using the formula for cosC=2aba2+b2−c2 , we get
2bcb2+c2−a2+2acc2+a2−b2+2aba2+b2−c2=23
Now shifting 23 on LHS , we get
2bcb2+c2−a2+2acc2+a2−b2+2aba2+b2−c2−23=0
Taking 2abc as the LCM we get ,
2abca(b2+c2−a2)+b(c2+a2−b2)+c(a2+b2−c2)−3abc=0
On simplifying we get ,
a(b2+c2−a2)+b(c2+a2−b2)+c(a2+b2−c2)=3abc
Now multiplying a,b&c with a2,b2&c2 respectively inside the bracket , we get
a(b2+c2)−a3+b(c2+a2)−b3+c(a2+b2)−c3=3abc
Now taking the cube terms on RHS we get ,
a(b2+c2)+b(c2+a2)+c(a2+b2)=a3+b3+c3+3abc
Now adding −6abc on both sides we get ,
a(b2+c2)+b(c2+a2)+c(a2+b2)−6abc=a3+b3+c3+3abc−6abc
On simplifying by splitting the −6abc into −2abc three times we get ,
ab2+ac2−2abc+bc2+ba2−2abc+ca2+cb2−2abc=a3+b3+c3−3abc
Now taking a,b&c common we get ,
a(b2+c2−2bc)+b(c2+a2−2ac)+c(a2+b2−2ab)=a3+b3+c3−3abc
Now using the algebraic identities we get ,
a(b−c)2+b(c−a)2+c(a−b)2=a3+b3+c3−3abc
Now using the identity of a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca) , we get
a(b−c)2+b(c−a)2+c(a−b)2=(a+b+c)(a2+b2+c2−ab−bc−ca)
Now multiplying by 2 on both sides we get ,
2a(b−c)2+2b(c−a)2+2c(a−b)2=(a+b+c)(2a2+2b2+2c2−2ab−2bc−2ca)
On splitting the square terms oh RHS we get ,
2a(b−c)2+2b(c−a)2+2c(a−b)2=(a+b+c)(a2+b2−2ab+b2+c2−2bc+c2+a2−2ca)
Now using the algebraic identities we get ,
2a(b−c)2+2b(c−a)2+2c(a−b)2=(a+b+c)[(a−b)2+(b−c)2+(c−a)2]
On simplifying we get ,
2a(b−c)2+2b(c−a)2+2c(a−b)2=(a+b+c)(a−b)2+(a+b+c)(b−c)2+(a+b+c)(c−a)2
Now subtracting the like terms form RHS with LHS , we get
(a+b+c−2c)(a−b)2+(a+b+c−2a)(b−c)2+(a+b+c−2b)(c−a)2=0
On solving we get ,
(a+b−c)(a−b)2+(b+c−a)(b−c)2+(a+c−b)(c−a)2=0
Now in the above expression the terms (a+b−c) , (b+c−a) and (a+c−b) represents the sum two sides minus third side , we know that in a triangle sum of two sides is always greater than third side, therefore these term will not be equal to zero , so the whole square terms will be zero ,
(a−b)2=0 , (b−c)2=0 and (c−a)2=0
On solving we get ,
a=b , b=c and c=b
Therefore , we get
a=b=c
Therefore , the triangle is equilateral.
So, the correct answer is “Option A”.
Note: In question like these , never try for given option , like do not solve for equilateral or isosceles or any other given option , solve the related to trigonometry and triangle with the cosine formulas for different angles , then apply the condition for different triangle. All sides are equal and represent an equilateral triangle and also note that an equilateral triangle is also an equiangular triangle.