Solveeit Logo

Question

Question: If in a triangle \[ABC\] , \[\cos A + \cos B + \cos C = \dfrac{3}{2}\] , then the triangle is A.E...

If in a triangle ABCABC , cosA+cosB+cosC=32\cos A + \cos B + \cos C = \dfrac{3}{2} , then the triangle is
A.Equilateral
B.Isosceles
C.Right angle triangle
D.None of these

Explanation

Solution

In the given question , we consider a triangle with sides a,b&ca,b\& c , now in any triangle the cosine of any of the angle say (A)\left( A \right) is given by cosA=b2+c2a22bc\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} , where a,b&ca,b\& c are the sides of the triangle . So, using these formulas we will find the value of cosB\cos B and cosC\cos C , then solve it accordingly .

Complete step by step solution:
Given : cosA+cosB+cosC=32\cos A + \cos B + \cos C = \dfrac{3}{2}
Now using the formula of cosA=b2+c2a22bc\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} we get ,
b2+c2a22bc+cosB+cosC=32\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \cos B + \cos C = \dfrac{3}{2} ,
Now using the formula for cosB=c2+a2b22bc\cos B = \dfrac{{{c^2} + {a^2} - {b^2}}}{{2bc}} we get ,
b2+c2a22bc+c2+a2b22ac+cosC=32\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \cos C = \dfrac{3}{2}
Now using the formula for cosC=a2+b2c22ab\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} , we get
b2+c2a22bc+c2+a2b22ac+a2+b2c22ab=32\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \dfrac{3}{2}
Now shifting 32\dfrac{3}{2} on LHS , we get
b2+c2a22bc+c2+a2b22ac+a2+b2c22ab32=0\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + \dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} - \dfrac{3}{2} = 0
Taking 2abc2abc as the LCM we get ,
a(b2+c2a2)+b(c2+a2b2)+c(a2+b2c2)3abc2abc=0\dfrac{{a\left( {{b^2} + {c^2} - {a^2}} \right) + b\left( {{c^2} + {a^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right) - 3abc}}{{2abc}} = 0
On simplifying we get ,
a(b2+c2a2)+b(c2+a2b2)+c(a2+b2c2)=3abca\left( {{b^2} + {c^2} - {a^2}} \right) + b\left( {{c^2} + {a^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right) = 3abc
Now multiplying a,b&ca,b\& c with a2,b2&c2{a^2},{b^2}\& {c^2} respectively inside the bracket , we get
a(b2+c2)a3+b(c2+a2)b3+c(a2+b2)c3=3abca\left( {{b^2} + {c^2}} \right) - {a^3} + b\left( {{c^2} + {a^2}} \right) - {b^3} + c\left( {{a^2} + {b^2}} \right) - {c^3} = 3abc
Now taking the cube terms on RHS we get ,
a(b2+c2)+b(c2+a2)+c(a2+b2)=a3+b3+c3+3abca\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right) = {a^3} + {b^3} + {c^3} + 3abc
Now adding 6abc - 6abc on both sides we get ,
a(b2+c2)+b(c2+a2)+c(a2+b2)6abc=a3+b3+c3+3abc6abca\left( {{b^2} + {c^2}} \right) + b\left( {{c^2} + {a^2}} \right) + c\left( {{a^2} + {b^2}} \right) - 6abc = {a^3} + {b^3} + {c^3} + 3abc - 6abc
On simplifying by splitting the 6abc - 6abc into 2abc - 2abc three times we get ,
ab2+ac22abc+bc2+ba22abc+ca2+cb22abc=a3+b3+c33abca{b^2} + a{c^2} - 2abc + b{c^2} + b{a^2} - 2abc + c{a^2} + c{b^2} - 2abc = {a^3} + {b^3} + {c^3} - 3abc
Now taking a,b&ca,b\& c common we get ,
a(b2+c22bc)+b(c2+a22ac)+c(a2+b22ab)=a3+b3+c33abca\left( {{b^2} + {c^2} - 2bc} \right) + b\left( {{c^2} + {a^2} - 2ac} \right) + c\left( {{a^2} + {b^2} - 2ab} \right) = {a^3} + {b^3} + {c^3} - 3abc
Now using the algebraic identities we get ,
a(bc)2+b(ca)2+c(ab)2=a3+b3+c33abca{\left( {b - c} \right)^2} + b{\left( {c - a} \right)^2} + c{\left( {a - b} \right)^2} = {a^3} + {b^3} + {c^3} - 3abc
Now using the identity of a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca){a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) , we get
a(bc)2+b(ca)2+c(ab)2=(a+b+c)(a2+b2+c2abbcca)a{\left( {b - c} \right)^2} + b{\left( {c - a} \right)^2} + c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)
Now multiplying by 22 on both sides we get ,
2a(bc)2+2b(ca)2+2c(ab)2=(a+b+c)(2a2+2b2+2c22ab2bc2ca)2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca} \right)
On splitting the square terms oh RHS we get ,
2a(bc)2+2b(ca)2+2c(ab)2=(a+b+c)(a2+b22ab+b2+c22bc+c2+a22ca)2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} - 2ab + {b^2} + {c^2} - 2bc + {c^2} + {a^2} - 2ca} \right)
Now using the algebraic identities we get ,
2a(bc)2+2b(ca)2+2c(ab)2=(a+b+c)[(ab)2+(bc)2+(ca)2]2a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right)\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right]
On simplifying we get ,
2a(bc)2+2b(ca)2+2c(ab)2=(a+b+c)(ab)2+(a+b+c)(bc)2+(a+b+c)(ca)22a{\left( {b - c} \right)^2} + 2b{\left( {c - a} \right)^2} + 2c{\left( {a - b} \right)^2} = \left( {a + b + c} \right){\left( {a - b} \right)^2} + \left( {a + b + c} \right){\left( {b - c} \right)^2} + \left( {a + b + c} \right){\left( {c - a} \right)^2}
Now subtracting the like terms form RHS with LHS , we get
(a+b+c2c)(ab)2+(a+b+c2a)(bc)2+(a+b+c2b)(ca)2=0\left( {a + b + c - 2c} \right){\left( {a - b} \right)^2} + \left( {a + b + c - 2a} \right){\left( {b - c} \right)^2} + \left( {a + b + c - 2b} \right){\left( {c - a} \right)^2} = 0
On solving we get ,
(a+bc)(ab)2+(b+ca)(bc)2+(a+cb)(ca)2=0\left( {a + b - c} \right){\left( {a - b} \right)^2} + \left( {b + c - a} \right){\left( {b - c} \right)^2} + \left( {a + c - b} \right){\left( {c - a} \right)^2} = 0
Now in the above expression the terms (a+bc)\left( {a + b - c} \right) , (b+ca)\left( {b + c - a} \right) and (a+cb)\left( {a + c - b} \right) represents the sum two sides minus third side , we know that in a triangle sum of two sides is always greater than third side, therefore these term will not be equal to zero , so the whole square terms will be zero ,
(ab)2=0{\left( {a - b} \right)^2} = 0 , (bc)2=0{\left( {b - c} \right)^2} = 0 and (ca)2=0{\left( {c - a} \right)^2} = 0
On solving we get ,
a=ba = b , b=cb = c and c=bc = b
Therefore , we get
a=b=ca = b = c
Therefore , the triangle is equilateral.
So, the correct answer is “Option A”.

Note: In question like these , never try for given option , like do not solve for equilateral or isosceles or any other given option , solve the related to trigonometry and triangle with the cosine formulas for different angles , then apply the condition for different triangle. All sides are equal and represent an equilateral triangle and also note that an equilateral triangle is also an equiangular triangle.