Solveeit Logo

Question

Question: If in a triangle \(ABC,c\left( a+b \right)\cos \dfrac{B}{2}=b\left( c+a \right)\cos \dfrac{C}{2}\), ...

If in a triangle ABC,c(a+b)cosB2=b(c+a)cosC2ABC,c\left( a+b \right)\cos \dfrac{B}{2}=b\left( c+a \right)\cos \dfrac{C}{2}, then the triangle is,
A. Isosceles
B. Right-angled
C. Isosceles or right-angled
D. None of the above

Explanation

Solution

Hint: To solve this question, we should know a few half angle triangle formulae of any triangle, that is, cosB2=s(sb)acs\cos \dfrac{B}{2}=\sqrt{\dfrac{s\left( s-b \right)}{ac}}s and cosC2=s(sc)ab\cos \dfrac{C}{2}=\sqrt{\dfrac{s\left( s-c \right)}{ab}}, where s=a+b+c2s=\dfrac{a+b+c}{2} and a,b,ca,b,c are the lengths of the sides of the triangle ABCABC.

Complete step-by-step answer:

In this question, we have been asked to find the type of triangle that satisfies c(a+b)cosB2=b(c+a)cosC2c\left( a+b \right)\cos \dfrac{B}{2}=b\left( c+a \right)\cos \dfrac{C}{2}. Now, we know that for any triangle ABCABC, having sides a,b,ca,b,c, follow the relation of,
cosB2=s(sb)ac(i)\cos \dfrac{B}{2}=\sqrt{\dfrac{s\left( s-b \right)}{ac}}\ldots \ldots \ldots \left( i \right) and,
cosC2=s(sc)ab(ii)\cos \dfrac{C}{2}=\sqrt{\dfrac{s\left( s-c \right)}{ab}}\ldots \ldots \ldots \left( ii \right).
We have been given, c(a+b)cosB2=b(c+a)cosC2c\left( a+b \right)\cos \dfrac{B}{2}=b\left( c+a \right)\cos \dfrac{C}{2}, which can also be written as,
cosB2cosC2=b(c+a)c(a+b)(iii)\dfrac{\cos \dfrac{B}{2}}{\cos \dfrac{C}{2}}=\dfrac{b\left( c+a \right)}{c\left( a+b \right)}\ldots \ldots \ldots \left( iii \right)
Now, we will put the values of cosB2\cos \dfrac{B}{2} and cosC2\cos \dfrac{C}{2} from equations (i) and (ii) in equation (iii). So, by substituting the values in equation (iii), we get,
s(sb)acs(sc)ab=b(c+a)c(a+b) s(sb)acs(sc)ab=b(c+a)c(a+b) s(sb)abs(sc)ac=b(c+a)c(a+b) (sb)b(sc)c=b(c+a)c(a+b) \begin{aligned} & \dfrac{\sqrt{\dfrac{s\left( s-b \right)}{ac}}}{\dfrac{s\left( s-c \right)}{ab}}=\dfrac{b\left( c+a \right)}{c\left( a+b \right)} \\\ & \Rightarrow \sqrt{\dfrac{\dfrac{s\left( s-b \right)}{ac}}{\dfrac{s\left( s-c \right)}{ab}}}=\dfrac{b\left( c+a \right)}{c\left( a+b \right)} \\\ & \Rightarrow \sqrt{\dfrac{s\left( s-b \right)ab}{s\left( s-c \right)ac}}=\dfrac{b\left( c+a \right)}{c\left( a+b \right)} \\\ & \Rightarrow \sqrt{\dfrac{\left( s-b \right)b}{\left( s-c \right)c}}=\dfrac{b\left( c+a \right)}{c\left( a+b \right)} \\\ \end{aligned}
Now, we square both the sides of the equation. By doing so, we get,
(sb)b(sc)c=[b(c+a)c(a+b)]2 (sb)b(sc)c=b2(c+a)2c2(a+b)2 \begin{aligned} & \dfrac{\left( s-b \right)b}{\left( s-c \right)c}={{\left[ \dfrac{b\left( c+a \right)}{c\left( a+b \right)} \right]}^{2}} \\\ & \Rightarrow \dfrac{\left( s-b \right)b}{\left( s-c \right)c}=\dfrac{{{b}^{2}}{{\left( c+a \right)}^{2}}}{{{c}^{2}}{{\left( a+b \right)}^{2}}} \\\ \end{aligned}
Now, we can see that bc\dfrac{b}{c} is common in both the sides of the equation, so by cancelling them we get,
sbsc=b(c+a)2c(a+b)2(iv)\dfrac{s-b}{s-c}=\dfrac{b{{\left( c+a \right)}^{2}}}{c{{\left( a+b \right)}^{2}}}\ldots \ldots \ldots \left( iv \right)
Now, we know that, s=a+b+c2s=\dfrac{a+b+c}{2}. So, we can write sb=a+b+c2b=a+cb2s-b=\dfrac{a+b+c}{2}-b=\dfrac{a+c-b}{2}. Also, we can write sc=a+b+c2c=a+bc2s-c=\dfrac{a+b+c}{2}-c=\dfrac{a+b-c}{2}. By substituting these values in equation (iv), we get,
a+cb2a+bc2=b(c+a)2c(a+b)2 a+cba+bc=b(c+a)2c(a+b)2 (a+c)b(a+b)c=b(c+a)2c(a+b)2 \begin{aligned} & \dfrac{\dfrac{a+c-b}{2}}{\dfrac{a+b-c}{2}}=\dfrac{b{{\left( c+a \right)}^{2}}}{c{{\left( a+b \right)}^{2}}} \\\ & \Rightarrow \dfrac{a+c-b}{a+b-c}=\dfrac{b{{\left( c+a \right)}^{2}}}{c{{\left( a+b \right)}^{2}}} \\\ & \Rightarrow \dfrac{\left( a+c \right)-b}{\left( a+b \right)-c}=\dfrac{b{{\left( c+a \right)}^{2}}}{c{{\left( a+b \right)}^{2}}} \\\ \end{aligned}
By cross multiplying the above equation, we get,
c(a+c)(a+b)2bc(a+b)2=b(a+c)2(a+b)bc(a+c)2c\left( a+c \right){{\left( a+b \right)}^{2}}-bc{{\left( a+b \right)}^{2}}=b{{\left( a+c \right)}^{2}}\left( a+b \right)-bc{{\left( a+c \right)}^{2}}
Simplifying it further, we get,
c(a+c)(a+b)2b(a+c)2(a+b)=bc(a+b)2bc(a+c)2c\left( a+c \right){{\left( a+b \right)}^{2}}-b{{\left( a+c \right)}^{2}}\left( a+b \right)=bc{{\left( a+b \right)}^{2}}-bc{{\left( a+c \right)}^{2}}
Now, we will take (a+b)(a+c)\left( a+b \right)\left( a+c \right) common from LHS and bcbc common form RHS. So, we get,
(a+b)(a+c)[c(a+b)b(a+c)]=bc[(a+b)2(a+c)2] (a+b)(a+c)[ac+bcabbc]=bc[a2+b2+2aba2c22ac] \begin{aligned} & \left( a+b \right)\left( a+c \right)\left[ c\left( a+b \right)-b\left( a+c \right) \right]=bc\left[ {{\left( a+b \right)}^{2}}-{{\left( a+c \right)}^{2}} \right] \\\ & \Rightarrow \left( a+b \right)\left( a+c \right)\left[ ac+bc-ab-bc \right]=bc\left[ {{a}^{2}}+{{b}^{2}}+2ab-{{a}^{2}}-{{c}^{2}}-2ac \right] \\\ \end{aligned}
By cancelling the similar terms, we get,
(a+b)(a+c)[acab]=bc[b2c2+2a(bc)]\left( a+b \right)\left( a+c \right)\left[ ac-ab \right]=bc\left[ {{b}^{2}}-{{c}^{2}}+2a\left( b-c \right) \right]
We know that b2c2=(b+c)(bc){{b}^{2}}-{{c}^{2}}=\left( b+c \right)\left( b-c \right). So, by applying that in the above equation, we get,
(a+b)(a+c)a(cb)=bc[(b+c)(bc)+2a(bc)] a(a+b)(a+c)(cb)=bc(bc)[b+c+2a] \begin{aligned} & \left( a+b \right)\left( a+c \right)a\left( c-b \right)=bc\left[ \left( b+c \right)\left( b-c \right)+2a\left( b-c \right) \right] \\\ & \Rightarrow a\left( a+b \right)\left( a+c \right)\left( c-b \right)=bc\left( b-c \right)\left[ b+c+2a \right] \\\ \end{aligned}
Let us consider, b=c=λb=c=\lambda , and so, by substituting it in the LHS of the above equation, we get LHS as,
=a(a+λ)(a+λ)(λλ) =0 \begin{aligned} & =a\left( a+\lambda \right)\left( a+\lambda \right)\left( \lambda -\lambda \right) \\\ & =0 \\\ \end{aligned}
Similarly, we will get the RHS as,
λ2(λλ)(λ+λ+2a) =0 \begin{aligned} & {{\lambda }^{2}}\left( \lambda -\lambda \right)\left( \lambda +\lambda +2a \right) \\\ & =0 \\\ \end{aligned}
Hence, we observe that LHS = RHS for b=cb=c.
Therefore triangle ABCABC is an isosceles triangle, so the correct answer is option A.

Note: One might think that the triangle can also be a right angled triangle, but for a right angled triangle to satisfy the given condition, angle B should be equal to angle C, where angle A is a right angle. So, this would become a special of the isosceles triangle. So, a right angled triangle would be the wrong answer.