Question
Question: If in a triangle ABC, a<sup>4</sup> + b<sup>4</sup> + c<sup>4</sup>= 2a<sup>2</sup>b<sup>2</sup> + b...
If in a triangle ABC, a4 + b4 + c4= 2a2b2 + b2c2+ 2a2c2, then sin A is equal to –
A
21
B
21
C
23
D
None of these
Answer
21
Explanation
Solution
We know cos A = 2bcb2+c2−a2
⇒ b4 + c4 + a4 + 2b2c2–2a2b2 –2a2c2 =4b2c2cos2 A
⇒ a4 + b4 + c4 = 2a2c2 + 2a2b2 + b2c2 (–2 + 4 cos2A)
comparing with given equation:–2 + 4 cos2A = 1
⇒ cos2 A =43 ⇒ sin2 A = 41
or sin A =21.