Solveeit Logo

Question

Question: If in a triangle ABC, a<sup>4</sup> + b<sup>4</sup> + c<sup>4</sup>= 2a<sup>2</sup>b<sup>2</sup> + b...

If in a triangle ABC, a4 + b4 + c4= 2a2b2 + b2c2+ 2a2c2, then sin A is equal to –

A

12\frac { 1 } { \sqrt { 2 } }

B

12\frac { 1 } { 2 }

C

32\frac { \sqrt { 3 } } { 2 }

D

None of these

Answer

12\frac { 1 } { 2 }

Explanation

Solution

We know cos A = b2+c2a22bc\frac { \mathrm { b } ^ { 2 } + \mathrm { c } ^ { 2 } - \mathrm { a } ^ { 2 } } { 2 \mathrm { bc } }

⇒ b4 + c4 + a4 + 2b2c2–2a2b2 –2a2c2 =4b2c2cos2 A

⇒ a4 + b4 + c4 = 2a2c2 + 2a2b2 + b2c2 (–2 + 4 cos2A)

comparing with given equation:–2 + 4 cos2A = 1

⇒ cos2 A =34\frac { 3 } { 4 } ⇒ sin2 A = 14\frac { 1 } { 4 }

or sin A =12\frac { 1 } { 2 }.