Solveeit Logo

Question

Question: If in a triangle ABC, 2 cos A = sin B cosec C, then (a) a = h (b) b = c (c) c = a (d) 2a = ...

If in a triangle ABC, 2 cos A = sin B cosec C, then
(a) a = h
(b) b = c
(c) c = a
(d) 2a = bc

Explanation

Solution

Hint: To solve this question given above, we will first find out the value of sin B from the relation given in the question. Then we will make use of the fact that the sum of all the angles in a triangle is 180o.{{180}^{o}}. From there, we will find the value of B in terms of A and C and then we will put this value in sin B. Now, we will write these trigonometric ratios in terms of the side length.

Complete step-by-step answer:
To start with, we are given in the question that,
2cosA=sinBcosecC.....(i)2\cos A=\sin B\operatorname{cosec}C.....\left( i \right)
Now, we know that, cosecθ=1sinθ.\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }. Thus, applying this formula in (i), we will get,
2cosA=sinBsinC\Rightarrow 2\cos A=\dfrac{\sin B}{\sin C}
2cosAsinC=sinB\Rightarrow 2\cos A\sin C=\sin B
sinB=2cosAsinC.....(ii)\Rightarrow \sin B=2\cos A\sin C.....\left( ii \right)
Now, we will draw a triangle ABC.

Now, we know that the sum of all the angles in the triangle is 180o.{{180}^{o}}. Thus, we will get,
A+B+C=180oA+B+C={{180}^{o}}
A+C=180oB\Rightarrow A+C={{180}^{o}}-B
B=180o(A+C).....(iii)\Rightarrow B={{180}^{o}}-\left( A+C \right).....\left( iii \right)
Now, we will apply sine on both sides. Thus, we will get,
sinB=sin[180o(A+C)]\Rightarrow \sin B=\sin \left[ {{180}^{o}}-\left( A+C \right) \right]
We know that, sin(180oθ)=sinθ,\sin \left( {{180}^{o}}-\theta \right)=\sin \theta , so we will get,
sinB=sin(A+C)....(iv)\Rightarrow \sin B=\sin \left( A+C \right)....\left( iv \right)
From (ii) and (iv), we will get,
sin(A+C)=2cosAsinC\Rightarrow \sin \left( A+C \right)=2\cos A\sin C
Now, we will apply the following identity in the above equation,
sin(x+y)=sinxcosy+cosxsiny\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y
Thus, we will get,
sinAcosC+cosAsinC=2cosAsinC\Rightarrow \sin A\cos C+\cos A\sin C=2\cos A\sin C
sinAcosC=cosAsinC.....(v)\Rightarrow \sin A\cos C=\cos A\sin C.....\left( v \right)
Now, we know that,
sinAa=sinCc=k\dfrac{\sin A}{a}=\dfrac{\sin C}{c}=k
Also,
cosA=b2+c2a22bc\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}
cosC=a2+b2c22ab\cos C=\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}
Thus, we will put these values in equation (v). After doing this, we will get,
ka(a2+b2c22ab)=(b2+c2a22bc)kc\Rightarrow ka\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)kc
a(a2+b2c22ab)=c(b2+c2a22bc)\Rightarrow a\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab} \right)=c\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)
a2+b2c22b=b2+c2a22b\Rightarrow \dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2b}=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2b}
a2+b2c2=b2+c2a2\Rightarrow {{a}^{2}}+{{b}^{2}}-{{c}^{2}}={{b}^{2}}+{{c}^{2}}-{{a}^{2}}
2a2=2c2\Rightarrow 2{{a}^{2}}=2{{c}^{2}}
a2=c2\Rightarrow {{a}^{2}}={{c}^{2}}
a=c\Rightarrow a=c
Hence, the option (c) is the right answer.

Note: The above question can also be solved by an alternate method as shown below:
2cosA=sinBcosecC2\cos A=\sin B\operatorname{cosec}C
Now, we will write cosec C in terms of sin C with the help of the following relation:
cosecC=1sinC\operatorname{cosec}C=\dfrac{1}{\sin C}
Thus, we will get the following equation:
2cosA=sinBsinC2\cos A=\dfrac{\sin B}{\sin C}
Now, we know that,
sinBb=sinCc\dfrac{\sin B}{b}=\dfrac{\sin C}{c}
sinBsinC=bc\Rightarrow \dfrac{\sin B}{\sin C}=\dfrac{b}{c}
Thus, we will get the following equation,
2cosA=bc\Rightarrow 2\cos A=\dfrac{b}{c}
Now, we will use the formula of cos A in the above equation which is shown below:
cosA=b2+c2a22bc\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}
Thus, we will get,
2(b2+c2a22bc)=bc\Rightarrow 2\left( \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \right)=\dfrac{b}{c}
b2+c2a2bc=bc\Rightarrow \dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{bc}=\dfrac{b}{c}
b2+c2a2=b2\Rightarrow {{b}^{2}}+{{c}^{2}}-{{a}^{2}}={{b}^{2}}
c2a2=0\Rightarrow {{c}^{2}}-{{a}^{2}}=0
c2=a2\Rightarrow {{c}^{2}}={{a}^{2}}
c=a\Rightarrow c=a