Solveeit Logo

Question

Question: If in a right angled triangle the hypotenuse is four times as long as the perpendicular drawn to it...

If in a right angled triangle the hypotenuse is four times as

long as the perpendicular drawn to it from opposite vertex,

then one of its acute angle is

A

1515 ^ { \circ }

B

3030 ^ { \circ }

C

4545 ^ { \circ }

D

None of these

Answer

1515 ^ { \circ }

Explanation

Solution

If x is length of perpendicular drawn to it from opposite vertex of a right angled triangle, so, length of diagonal AB=y1+y2A B = y _ { 1 } + y _ { 2 } ........(i)

From ΔOCB,y2=xcotθ\Delta O C B , y _ { 2 } = x \cot \theta and from OCA,y1=xtanθ\triangle O C A , y _ { 1 } = x \tan \theta

Put the values in equation (i), then AB=x(tanθ+cotθ)A B = x ( \tan \theta + \cot \theta ) .......(ii)

Since, length of hypotenuse = 4 (Length of perpendicular)

\therefore x(tanθ+cotθ)=4xx ( \tan \theta + \cot \theta ) = 4 xsin2θ+cos2θsinθcosθ=4\frac { \sin ^ { 2 } \theta + \cos ^ { 2 } \theta } { \sin \theta \cdot \cos \theta } = 4

sin2θ=12\sin 2 \theta = \frac { 1 } { 2 }2θ=302 \theta = 30 ^ { \circ }θ=15\theta = 15 ^ { \circ }.

Trick:  Length of hypotenuse  Length of perpend icular drawn from opposite vertex to hypotenuse =2sin2θ\frac { \text { Length of hypotenuse } } { \text { Length of perpend icular drawn from opposite vertex to hypotenuse } } = \frac { 2 } { \sin 2 \theta }

4=2sin2θ4 = \frac { 2 } { \sin 2 \theta }sin2θ=12\sin 2 \theta = \frac { 1 } { 2 }sin2θ\sin 2 \theta=sin30\sin 30 ^ { \circ }θ=15\theta = 15 ^ { \circ }.