Solveeit Logo

Question

Question: If in a right angled triangle ABC, the hypotenuse \(AB = p,\) then \(\overset{\rightarrow}{AB}.\over...

If in a right angled triangle ABC, the hypotenuse AB=p,AB = p, then AB.AC+BC.BA+CA.CB\overset{\rightarrow}{AB}.\overset{\rightarrow}{AC} + \overset{\rightarrow}{BC}.\overset{\rightarrow}{BA} + \overset{\rightarrow}{CA}.\overset{\rightarrow}{CB} is equal to

A

2p22p^{2}

B

p22\frac{p^{2}}{2}

C

p2p^{2}

D

None of these

Answer

p2p^{2}

Explanation

Solution

We have AB.AC+BC.BA+CA.CB\overset{\rightarrow}{AB}.\overset{\rightarrow}{AC} + \overset{\rightarrow}{BC}.\overset{\rightarrow}{BA} + \overset{\rightarrow}{CA}.\overset{\rightarrow}{CB}

(AB)(AC)cosθ+(BC)(BA)cos(90oθ)+0(AB)(AC)\cos\theta + (BC)(BA)\cos(90^{o} - \theta) + 0

=AB(ACcosθ+BCsinθ)=AB((AC)2AB+(BC)2AB)AB(AC\cos\theta + BC\sin\theta) = AB\left( \frac{(AC)^{2}}{AB} + \frac{(BC)^{2}}{AB} \right)

=AC2+BC2=AB2=p2= AC^{2} + BC^{2} = AB^{2} = p^{2}.