Solveeit Logo

Question

Question: If in a \[\Delta ABC\], \(\cos A.\cos B+\sin A.\sin B.\sin C=1\), then the triangle ABC is (a) Iso...

If in a ΔABC\Delta ABC, cosA.cosB+sinA.sinB.sinC=1\cos A.\cos B+\sin A.\sin B.\sin C=1, then the triangle ABC is
(a) Isosceles
(b) Right angled
(c) Equilateral
(d) Right angle isosceles

Explanation

Solution

We start solving the problem by using the fact that the sine of the angle in any triangle is less than or equal to 1 for the angle C. We use this in the given equation cosA.cosB+sinA.sinB.sinC=1\cos A.\cos B+\sin A.\sin B.\sin C=1 and use the fact cos(AB)=cosA.cosBsinA.sinB\cos \left( A-B \right)=\cos A.\cos B-\sin A.\sin B to get the relations between angles A and B. We then substitute this relation in the condition given in the problem to find the angle C, which gives us the required answer.

Complete step by step answer:
According to the question, we have given a triangle ABC satisfying cosA.cosB+sinA.sinB.sinC=1\cos A.\cos B+\sin A.\sin B.\sin C=1. We need to check what the given triangle ABC is.

We know that the value of sine of the angle in any triangle is less than or equal to 1.
So, we have sinC1\sin C\le 1.
Let us multiply both sides with sinA.sinB\sin A.\sin B.
So, we get sinA.sinB.sinCsinA.sinB\sin A.\sin B.\sin C\le \sin A.\sin B ---(1).
Now, let us add both sides of equation (1) with cosA.cosB\cos A.\cos B.
cosA.cosB+sinA.sinB.sinCcosA.cosB+sinA.sinB\Rightarrow \cos A.\cos B+\sin A.\sin B.\sin C\le \cos A.\cos B+\sin A.\sin B.
We know that cos(AB)=cosA.cosB+sinA.sinB\cos \left( A-B \right)=\cos A.\cos B+\sin A.\sin B.
cosA.cosB+sinA.sinB.sinCcos(AB)\Rightarrow \cos A.\cos B+\sin A.\sin B.\sin C\le \cos \left( A-B \right) ---(2).
According to the problem, we have cosA.cosB+sinA.sinB.sinC=1\cos A.\cos B+\sin A.\sin B.\sin C=1. We substitute this in equation (2).
1cos(AB)\Rightarrow 1\le \cos \left( A-B \right).
We know that the range of the cosine function is [1,1]\left[ -1,1 \right]. This tells us that the cosine function cannot be greater than 1.
So, we get cos(AB)=1\cos \left( A-B \right)=1.
cos(AB)=cos0\Rightarrow \cos \left( A-B \right)=\cos {{0}^{\circ }}.
So, we have got AB=0A=BA-B={{0}^{\circ }}\Leftrightarrow A=B ---(3). Let us use this result in cosA.cosB+sinA.sinB.sinC=1\cos A.\cos B+\sin A.\sin B.\sin C=1.
So, we get cosA.cosA+sinA.sinA.sinC=1\cos A.\cos A+\sin A.\sin A.\sin C=1.
cos2A+sin2A.sinC=1\Rightarrow {{\cos }^{2}}A+{{\sin }^{2}}A.\sin C=1.
cos2A+sin2A.(11+sinC)=1\Rightarrow {{\cos }^{2}}A+{{\sin }^{2}}A.\left( 1-1+\sin C \right)=1.
cos2A+sin2Asin2A+sin2A.sinC=1\Rightarrow {{\cos }^{2}}A+{{\sin }^{2}}A-{{\sin }^{2}}A+{{\sin }^{2}}A.\sin C=1.
1sin2A+sin2A.sinC=1\Rightarrow 1-{{\sin }^{2}}A+{{\sin }^{2}}A.\sin C=1.
sin2A+sin2A.sinC=0\Rightarrow -{{\sin }^{2}}A+{{\sin }^{2}}A.\sin C=0.
sin2A.sinC=sin2A\Rightarrow {{\sin }^{2}}A.\sin C={{\sin }^{2}}A.
sinC=1\Rightarrow \sin C=1.
C=π2\Rightarrow C=\dfrac{\pi }{2} ---(4).
We know that the sum of the angles in a triangle is 180{{180}^{\circ }}. So, we get A+B+C=180A+B+C={{180}^{\circ }}.
From equations (3) and (4), we get A+A+90=180A+A+{{90}^{\circ }}={{180}^{\circ }}.
2A=90\Rightarrow 2A={{90}^{\circ }}.
A=45=B\Rightarrow A={{45}^{\circ }}=B ---(5).
So, we have found the angles in triangle ABC as A=B=45A=B={{45}^{\circ }} and C=90C={{90}^{\circ }}, which tells us that the triangle is right angle isosceles.
∴ The given triangle ABC is the right angle isosceles.

So, the correct answer is “Option d”.

Note: We can also solve this problem by substituting the angles A=B=C=60A=B=C={{60}^{\circ }} in order to check whether the given triangle is equilateral. We can substitute C=90C={{90}^{\circ }} by assuming the triangle is right angled at vertex C and check the properties of other properties. We can use the facts that cosAcosB=cos(A+B)+cos(AB)\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right), sinAsinB=cos(A+B)cos(AB)-\sin A\sin B=\cos \left( A+B \right)-\cos \left( A-B \right) and A+B=180CA+B={{180}^{\circ }}-C to solve the problem alternatively.