Solveeit Logo

Question

Question: If in a ∆ABC,\(\frac{2cosA}{a} + \frac{cosB}{b} + \frac{2cosC}{c} = \frac{a}{bc} + \frac{b}{ac}\), t...

If in a ∆ABC,2cosAa+cosBb+2cosCc=abc+bac\frac{2cosA}{a} + \frac{cosB}{b} + \frac{2cosC}{c} = \frac{a}{bc} + \frac{b}{ac}, then angle A

equals to

A

900

B

450

C

1350

D

None of these

Answer

900

Explanation

Solution

We have 2cosAa+cosBb+2cosCc=abc+bac\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc} + \frac{b}{ac}

Multiplying

both sides by abc

⇒ 2bc cosA + ac cosB + 2ab cosC = a2 + b2 (b2 + c2 – a2) + (c2+a2b2)2+(a2)\frac{\left( c^{2} + a^{2} - b^{2} \right)}{2} + \left( a^{2} \right)

⇒ (c2 + a2 – b2) = 2a2 – 2b2

⇒ b2 + c2 = a2 ⇒ ∠A = 900