Solveeit Logo

Question

Question: If in a ∆ABC, the sides b, a, c are in A.P. then-...

If in a ∆ABC, the sides b, a, c are in A.P. then-

A

acos2 C2\frac { \mathrm { C } } { 2 } + c cos2 A2\frac { \mathrm { A } } { 2 } =

B

c cos2 + b cos2= 3a2\frac { 3 a } { 2 }

C

bcos2 A2\frac { \mathrm { A } } { 2 } + a cos2=

D

2 sin (B2)\left( \frac { B } { 2 } \right) = cos (CA2)\left( \frac { \mathrm { C } - \mathrm { A } } { 2 } \right)

Answer

c cos2 + b cos2= 3a2\frac { 3 a } { 2 }

Explanation

Solution

b + c = 2a

Option B :

⇒ c cos2 B/2 + b cos2 C/2 = 3a/2

⇒ 2c cos2 B/2 + 2b cos2 C/2 = 3a

⇒ c (1 + cos B) + b(1 + cos C) = 3a

⇒ b + c + c cos B + b cos C = 3a

⇒ b + c + a = 3a

⇒ b + c = 2a which is in A.P.