Solveeit Logo

Question

Question: If Im\(\left( \frac{2z + 1}{iz + 1} \right) = - 2\), then the locus of the point representing z in t...

If Im(2z+1iz+1)=2\left( \frac{2z + 1}{iz + 1} \right) = - 2, then the locus of the point representing z in the complex plane is

A

Circle

B

A straight line

C

A parabola

D

None of these

Answer

A straight line

Explanation

Solution

Sol. Im(2z+1iz+1)=2\left( \frac{2z + 1}{iz + 1} \right) = - 2

12i(2z+1iz+12zˉ+1izˉ+1)\frac{1}{2i}\left( \frac{2z + 1}{iz + 1} - \frac{2\bar{z} + 1}{- i\bar{z} + 1} \right) = – 2

⇒ (1+ 2z) (1 – izˉ\bar{z}) – (2zˉ\bar{z} + 1) (iz + 1) = – 4i (iz + 1)

(1 – izˉ\bar{z})

⇒ 1 – izˉ\bar{z} + 2z – 2 izzˉ\bar{z} – 2izzˉ\bar{z}– 2zˉ\bar{z} – iz – 1

= – 4i (iz + zzˉ\bar{z} + 1 – izˉ\bar{z})

⇒ 2(z – zˉ\bar{z}) – i(z +zˉ\bar{z}) – 4izzˉ\bar{z}

= – 4i[zzˉ+1+i(zzˉ)]\left\lbrack z\bar{z} + 1 + i\left( z - \bar{z} \right) \right\rbrack.…. (1)

⇒ Let z = x + iy, x, y, ∈ R.

Then (1) yields x + 2y = 2 which gives a straight line