Solveeit Logo

Question

Question: If \(A _ { 1 } , A _ { 2 } , \ldots A _ { n }\) are any n events, then...

If A1,A2,AnA _ { 1 } , A _ { 2 } , \ldots A _ { n } are any n events, then

A

P(A1A2An)=P(A1)+P(A2)++P(An)P \left( A _ { 1 } \cup A _ { 2 } \cup \ldots \cup A _ { n } \right) = P \left( A _ { 1 } \right) + P \left( A _ { 2 } \right) + \ldots + P \left( A _ { n } \right)

B

P(A1A2An)>P(A1)+P(A2)++P(An)P \left( A _ { 1 } \cup A _ { 2 } \cup \ldots \cup A _ { n } \right) > P \left( A _ { 1 } \right) + P \left( A _ { 2 } \right) + \ldots + P \left( A _ { n } \right)

C

P(A1A2An)P(A1)+P(A2)++P(An)P \left( A _ { 1 } \cup A _ { 2 } \cup \ldots \cup A _ { n } \right) \leq P \left( A _ { 1 } \right) + P \left( A _ { 2 } \right) + \ldots + P \left( A _ { n } \right)

D

None of these

Answer

P(A1A2An)P(A1)+P(A2)++P(An)P \left( A _ { 1 } \cup A _ { 2 } \cup \ldots \cup A _ { n } \right) \leq P \left( A _ { 1 } \right) + P \left( A _ { 2 } \right) + \ldots + P \left( A _ { n } \right)

Explanation

Solution

For any two events AA and we have

P(AB)=P(A)+P(B)P(AB)P ( A \cup B ) = P ( A ) + P ( B ) - P ( A \cap B )

P(AB)P(A)+P(B)\therefore P ( A \cup B ) \leq P ( A ) + P ( B )

Using principle of mathematical induction, it can be easily established that P(i=1nAi)i=1nP(Ai)P \left( \bigcup _ { i = 1 } ^ { n } A _ { i } \right) \leq \sum _ { i = 1 } ^ { n } P \left( A _ { i } \right).