Question
Question: If \(\sin ^ { 4 } x + \cos ^ { 4 } y + 2 = 4 \sin x \cos y\) and <img src="https://cdn.pureessence.t...
If sin4x+cos4y+2=4sinxcosy and
then sinx + cosy is equal to
A
-2
B
0
C
2
D
None of these
Answer
2
Explanation
Solution
The given equation can be written as
sin4x+cos4y+2−4sinxcosy=0 ⇒ (sin2x−1)2+(cos2y−1)2+2sin2x+2cos2y−4sinxcosy=0⇒ (sin2x−1)2+(cos2y−1)2+2(sinx−cosy)2=0 which is true if ,
and sinx=cosyas
we get sinx=cosy=1
⇒ sinx+cosy=2