Solveeit Logo

Question

Question: If \(\left( \frac { 1 + \sin \theta - \cos \theta } { 1 + \sin \theta + \cos \theta } \right) ^ { 2 ...

If (1+sinθcosθ1+sinθ+cosθ)2=λ(1cosθ1+cosθ)\left( \frac { 1 + \sin \theta - \cos \theta } { 1 + \sin \theta + \cos \theta } \right) ^ { 2 } = \lambda \left( \frac { 1 - \cos \theta } { 1 + \cos \theta } \right), then λ equals

A

– 1

B

1

C

2

D

– 2

Answer

1

Explanation

Solution

(1+sinθcosθ1+sinθ+cosθ)2=(2sin2θ2+2sinθ2cosθ22cos2θ2+2sinθ2cosθ2)2\left( \frac { 1 + \sin \theta - \cos \theta } { 1 + \sin \theta + \cos \theta } \right) ^ { 2 } = \left( \frac { 2 \sin ^ { 2 } \frac { \theta } { 2 } + 2 \sin \frac { \theta } { 2 } \cos \frac { \theta } { 2 } } { 2 \cos ^ { 2 } \frac { \theta } { 2 } + 2 \sin \frac { \theta } { 2 } \cos \frac { \theta } { 2 } } \right) ^ { 2 }

= tan2 θ2\frac { \theta } { 2 } = 1cosθ1+cosθ\frac { 1 - \cos \theta } { 1 + \cos \theta }

⇒ λ = 1