Solveeit Logo

Question

Question: If \(x , y , z\) are perpendicular drawn from the vertices of triangle having sides a, b, and c, the...

If x,y,zx , y , z are perpendicular drawn from the vertices of triangle having sides a, b, and c, then the value of bxc+cya+azb\frac { b x } { c } + \frac { c y } { a } + \frac { a z } { b } will be

A

a2+b2+c22R\frac { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } { 2 R }

B

a2+b2+c2R2\frac { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } { R ^ { 2 } }

C

a2+b2+c24R\frac { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } { 4 R }

D

2(a2+b2+c2)R\frac { 2 \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } \right) } { R }

Answer

a2+b2+c22R\frac { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } { 2 R }

Explanation

Solution

Let area of triangle be Δ\Delta , then according to question,

Δ=12ax=12by=12cz\Delta = \frac { 1 } { 2 } a x = \frac { 1 } { 2 } b y = \frac { 1 } { 2 } c z

\therefore bxc+cya+azb=bc(2Δa)+ca(2Δb)+ab(2Δc)\frac { b x } { c } + \frac { c y } { a } + \frac { a z } { b } = \frac { b } { c } \left( \frac { 2 \Delta } { a } \right) + \frac { c } { a } \left( \frac { 2 \Delta } { b } \right) + \frac { a } { b } \left( \frac { 2 \Delta } { c } \right)= 2Δ(b2+c2+a2)abc=2(a2+b2+c2)abcabc4R\frac { 2 \Delta \left( b ^ { 2 } + c ^ { 2 } + a ^ { 2 } \right) } { a b c } = \frac { 2 \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } \right) } { a b c } \cdot \frac { a b c } { 4 R } = a2+b2+c22R\frac { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } { 2 R }.