Question
Question: If \(A D , B E\) and CF are the medians of a \(\triangle A B C\) then \(\left( A D ^ { 2 } + B E ^ ...
If AD,BE and CF are the medians of a △ABC then
(AD2+BE2+CF2) : (BC2+CA2+AB2) is equal to
A
4 : 2
B
3 : 2
C
3 : 4
D
2 : 3
Answer
3 : 4
Explanation
Solution
We have, AB2+AC2=2(AD2+BD2)
⇒2c2+b2−4a2=AD2 .....(i)
2a2+c2−4b2=BE2 ......(ii)
and 2a2+b2−4c2=CF2 .........(iii)
a2+b2+c2−4a2+b2+c2=AD2+BE2+CF2Adding (i), (ii)
and (iii) we get, (AD2+BE2+CF2):(a2+b2+c2)=3:4.