Solveeit Logo

Question

Question: If \(k\) be the perimeter of the \(\triangle A B C\), then \(b \cos ^ { 2 } \frac { C } { 2 } + c \c...

If kk be the perimeter of the ABC\triangle A B C, then bcos2C2+ccos2B2b \cos ^ { 2 } \frac { C } { 2 } + c \cos ^ { 2 } \frac { B } { 2 } is equal to

A

k

B

2k

C

k2\frac { k } { 2 }

D

None of these

Answer

k2\frac { k } { 2 }

Explanation

Solution

bcos2C2+ccos2B2=b2(1+cosC)+c2(1+cosB)b \cos ^ { 2 } \frac { C } { 2 } + c \cos ^ { 2 } \frac { B } { 2 } = \frac { b } { 2 } ( 1 + \cos C ) + \frac { c } { 2 } ( 1 + \cos B )

= b2+c2+12(bcosC+ccosB)\frac { b } { 2 } + \frac { c } { 2 } + \frac { 1 } { 2 } ( b \cos C + c \cos B ) = a+b+c2=k2\frac { a + b + c } { 2 } = \frac { k } { 2 }.