Solveeit Logo

Question

Question: If \(\Delta\) stands for the area of a triangle ABC**,** then \(a ^ { 2 } \sin 2 B + b ^ { 2 } \si...

If Δ\Delta stands for the area of a triangle ABC**,** then

a2sin2B+b2sin2A=a ^ { 2 } \sin 2 B + b ^ { 2 } \sin 2 A =

A

3Δ3 \Delta

B

2Δ2 \Delta

C

4Δ4 \Delta

D

4Δ- 4 \Delta

Answer

4Δ4 \Delta

Explanation

Solution

Use sine rule, Δ=12\Delta = \frac { 1 } { 2 } ab sin C

L.H.S.=k2(sin2A.2sinBcosB+sin2B.2sinAcosA)k ^ { 2 } \left( \sin ^ { 2 } A .2 \sin B \cos B + \sin ^ { 2 } B .2 \sin A \cos A \right)

=2absinC=4Δ2 a b \sin C = 4 \Delta