Solveeit Logo

Question

Question: If \(\log _ { x } a , a ^ { x / 2 }\) and \(\log _ { b } x\) are in G.P., then \(x =\)...

If logxa,ax/2\log _ { x } a , a ^ { x / 2 } and logbx\log _ { b } x are in G.P., then x=x =

A

log(logba)- \log \left( \log _ { b } a \right)

B

loga(logab)- \log _ { a } \left( \log _ { a } b \right)

C

loga(logea)loga(logeb)\log _ { a } \left( \log _ { e } a \right) - \log _ { a } \left( \log _ { e } b \right)

D

loga(logeb)loga(logea)\log _ { a } \left( \log _ { e } b \right) - \log _ { a } \left( \log _ { e } a \right)

Answer

loga(logea)loga(logeb)\log _ { a } \left( \log _ { e } a \right) - \log _ { a } \left( \log _ { e } b \right)

Explanation

Solution

Obviously (ax/2)2=logxalogbx=logba\left( a ^ { x / 2 } \right) ^ { 2 } = \log _ { x } a \cdot \log _ { b } x = \log _ { b } a

\Rightarrow ax=logbaa ^ { x } = \log _ { b } a \Rightarrow x=loga(logba)x = \log _ { a } \left( \log _ { b } a \right)

\Rightarrow x=loga(logealogeb)=loga(logea)loga(logeb)x = \log _ { a } \left( \frac { \log _ { e } a } { \log _ { e } b } \right) = \log _ { a } \left( \log _ { e } a \right) - \log _ { a } \left( \log _ { e } b \right).