Solveeit Logo

Question

Question: If \(( p + q ) ^ { t h }\) term of a G.P. be \(m\) and \(( p - q ) ^ { t h }\) term be \(n\), then ...

If (p+q)th( p + q ) ^ { t h } term of a G.P. be mm and (pq)th( p - q ) ^ { t h } term be nn, then the pthp ^ { t h } term will be.

A

m/nm / n

B

mn\sqrt { m n }

C

mnm n

D

0

Answer

mn\sqrt { m n }

Explanation

Solution

Given that m=arp+q1m = a r ^ { p + q - 1 } and n=arpq1n = a r ^ { p - q - 1 }

rp+q1p+q+1=mnr=(mn)1/(2q)r ^ { p + q - 1 - p + q + 1 } = \frac { m } { n } \Rightarrow r = \left( \frac { m } { n } \right) ^ { 1 / ( 2 q ) } and a=m(mn)(p+q1)/2qa = \frac { m } { \left( \frac { m } { n } \right) ^ { ( p + q - 1 ) / 2 q } }

Now pthp ^ { t h }term

=arp1=m(mn)(p+q1)/2q(mn)(p1)/2q= a r ^ { p - 1 } = \frac { m } { \left( \frac { m } { n } \right) ^ { ( p + q - 1 ) / 2 q } } \left( \frac { m } { n } \right) ^ { ( p - 1 ) / 2 q }

=m(mn)(p1)/2q(p+q1)/(2q)=m(mn)1/2=m11/2n1/2= m \left( \frac { m } { n } \right) ^ { ( p - 1 ) / 2 q - ( p + q - 1 ) / ( 2 q ) } = m \left( \frac { m } { n } \right) ^ { - 1 / 2 } = m ^ { 1 - 1 / 2 } n ^ { 1 / 2 }

=m1/2n1/2=mn= m ^ { 1 / 2 } n ^ { 1 / 2 } = \sqrt { m n } .

Aliter : As we know each term in a G.P. is geometric mean of the terms equidistant from it. Here (p+q)th( p + q ) ^ { t h } and (pq)th( p - q ) ^ { t h } terms are equidistant from pthp ^ { t h } term at a distance of qq. Therefore, pthp ^ { t h } term will be G.M. of (p+q)th( p + q ) ^ { t h } and (pq)th( p - q ) ^ { t h } mn\sqrt { m n } .