Question
Question: If \(1 , \log _ { y } x , \log _ { z } y , - 15 \log _ { x } z\) are in A.P., then....
If 1,logyx,logzy,−15logxz are in A.P., then.
A
z3=x
B
x=y−1
C
z−3=y
D
x=y−1=z3 (e) All the above
Explanation
Solution
(5)
Sol. Let be the common difference then
logyx=1+d ⇒ x=y1+d
logzy=1+2d ⇒ y=z1+2dand−15logxz=1+3d
⇒ z=x−(1+3d)/15
∴ x=y1+d=z(1+2d)(1+d)=x−(1+d)(1+2d)(1+3d)/15
⇒ (1+d)(1+2d)(1+3d)=−15
⇒ 6d3+11d2+6d+16=0
⇒ (d+2)(6d2−d+8)=0 ⇒ d=−2
[Note that 6d2−d+8=0 has complex roots]
∴ x=y1+d=y−1,y=z1−4=z−3
∴ x=(z−3)−1=z3 . Also x=y−1=z3 .