Solveeit Logo

Question

Question: If \(1 , \log _ { y } x , \log _ { z } y , - 15 \log _ { x } z\) are in A.P., then....

If 1,logyx,logzy,15logxz1 , \log _ { y } x , \log _ { z } y , - 15 \log _ { x } z are in A.P., then.

A

z3=xz ^ { 3 } = x

B

x=y1x = y ^ { - 1 }

C

z3=yz ^ { - 3 } = y

D

x=y1=z3x = y ^ { - 1 } = z ^ { 3 } (e) All the above

Explanation

Solution

(5)

Sol. Let be the common difference then

logyx=1+d\log _ { y } x = 1 + d \Rightarrow x=y1+dx = y ^ { 1 + d }

logzy=1+2d\log _ { z } y = 1 + 2 d \Rightarrow y=z1+2dy = z ^ { 1 + 2 d }and15logxz=1+3d- 15 \log _ { x } z = 1 + 3 d

\Rightarrow z=x(1+3d)/15z = x ^ { - ( 1 + 3 d ) / 15 }

\therefore x=y1+d=z(1+2d)(1+d)=x(1+d)(1+2d)(1+3d)/15x = y ^ { 1 + d } = z ^ { ( 1 + 2 d ) ( 1 + d ) } = x ^ { - ( 1 + d ) ( 1 + 2 d ) ( 1 + 3 d ) / 15 }

\Rightarrow (1+d)(1+2d)(1+3d)=15( 1 + d ) ( 1 + 2 d ) ( 1 + 3 d ) = - 15

\Rightarrow 6d3+11d2+6d+16=06 d ^ { 3 } + 11 d ^ { 2 } + 6 d + 16 = 0

\Rightarrow (d+2)(6d2d+8)=0( d + 2 ) \left( 6 d ^ { 2 } - d + 8 \right) = 0 \Rightarrow d=2d = - 2

[Note that 6d2d+8=06 d ^ { 2 } - d + 8 = 0 has complex roots]

\therefore x=y1+d=y1,y=z14=z3x = y ^ { 1 + d } = y ^ { - 1 } , y = z ^ { 1 - 4 } = z ^ { - 3 }

\therefore x=(z3)1=z3x = \left( z ^ { - 3 } \right) ^ { - 1 } = z ^ { 3 } . Also x=y1=z3x = y ^ { - 1 } = z ^ { 3 } .