Question
Question: If \(\frac { 1 } { p + q } , \frac { 1 } { r + p } , \frac { 1 } { q + r }\) are in A.P., then....
If p+q1,r+p1,q+r1 are in A.P., then.
A
are in A.P.
B
p2,q2,r2 are in A.P.
C
p1,q1,r1 are in A.P.
D
None of these
Answer
p2,q2,r2 are in A.P.
Explanation
Solution
Since p+q1,r+q1 and q+r1 are in A.P.
∴ r+q1−p+q1=q+r1−r+p1
⇒ (r+p)(p+q)p+q−r−p=(q+r)(r+p)r+p−q−r
⇒ p+qq−r=q+rp−q or q2−r2=p2−q2
∴ 2q2=r2+p2
Therefore p2,q2,r2 are in A.P.