Solveeit Logo

Question

Question: If \(\frac { 1 } { p + q } , \frac { 1 } { r + p } , \frac { 1 } { q + r }\) are in A.P., then....

If 1p+q,1r+p,1q+r\frac { 1 } { p + q } , \frac { 1 } { r + p } , \frac { 1 } { q + r } are in A.P., then.

A

are in A.P.

B

p2,q2,r2p ^ { 2 } , q ^ { 2 } , r ^ { 2 } are in A.P.

C

1p,1q,1r\frac { 1 } { p } , \frac { 1 } { q } , \frac { 1 } { r } are in A.P.

D

None of these

Answer

p2,q2,r2p ^ { 2 } , q ^ { 2 } , r ^ { 2 } are in A.P.

Explanation

Solution

Since 1p+q,1r+q\frac { 1 } { p + q } , \frac { 1 } { r + q } and 1q+r\frac { 1 } { q + r } are in A.P.

\therefore 1r+q1p+q=1q+r1r+p\frac { 1 } { r + q } - \frac { 1 } { p + q } = \frac { 1 } { q + r } - \frac { 1 } { r + p }

\Rightarrow p+qrp(r+p)(p+q)=r+pqr(q+r)(r+p)\frac { p + q - r - p } { ( r + p ) ( p + q ) } = \frac { r + p - q - r } { ( q + r ) ( r + p ) }

\Rightarrow qrp+q=pqq+r\frac { q - r } { p + q } = \frac { p - q } { q + r } or q2r2=p2q2q ^ { 2 } - r ^ { 2 } = p ^ { 2 } - q ^ { 2 }

\therefore 2q2=r2+p22 q ^ { 2 } = r ^ { 2 } + p ^ { 2 }

Therefore p2,q2,r2p ^ { 2 } , q ^ { 2 } , r ^ { 2 } are in A.P.