Solveeit Logo

Question

Question: If <img src="https://cdn.pureessence.tech/canvas_436.png?top_left_x=1444&top_left_y=1769&width=300&h...

If are in A.P. with common difference , , then the sum of the following series is

sind(coseca1coseca2+coseca2coseca3+\sin d \left( \operatorname { cosec } a _ { 1 } \cdot \operatorname { cosec } a _ { 2 } + \operatorname { cosec } a _ { 2 } \cdot \operatorname { cosec } a _ { 3 } + \ldots \ldots \ldots \right.

+cosecan1cosecan)\left. + \operatorname { cosec } a _ { n - 1 } \operatorname { cosec } a _ { n } \right)

A

seca1secan\sec a _ { 1 } - \sec a _ { n }

B

cota1cotan\cot a _ { 1 } - \cot a _ { n }

C

tana1tanan\tan a _ { 1 } - \tan a _ { n }

D

coseca1cosecan\operatorname { cosec } a _ { 1 } - \operatorname { cosec } a _ { n }

Answer

cota1cotan\cot a _ { 1 } - \cot a _ { n }

Explanation

Solution

As given

d=a2a1=a3a2=.=anan1d = a _ { 2 } - a _ { 1 } = a _ { 3 } - a _ { 2 } = \ldots . = a _ { n } - a _ { n - 1 }

\therefore sind{coseca1coseca2+..+cosecan1cosecan}\sin d \left\{ \operatorname { cosec } a _ { 1 } \operatorname { cosec } a _ { 2 } + \ldots . . + \operatorname { cosec } a _ { n - 1 } \operatorname { cosec } a _ { n } \right\}

=(cota1cota2)+(cota2cota3)+= \left( \cot a _ { 1 } - \cot a _ { 2 } \right) + \left( \cot a _ { 2 } - \cot a _ { 3 } \right) + \ldots +(cotan1cotan)+ \left( \cot a _ { n - 1 } - \cot a _ { n } \right)

=cota1cotan= \cot a _ { 1 } - \cot a _ { n }.