Solveeit Logo

Question

Question: If \(1 , \log _ { 9 } \left( 3 ^ { 1 - x } + 2 \right) , \log _ { 3 } \left( 4.3 ^ { x } - 1 \right)...

If 1,log9(31x+2),log3(4.3x1)1 , \log _ { 9 } \left( 3 ^ { 1 - x } + 2 \right) , \log _ { 3 } \left( 4.3 ^ { x } - 1 \right) are in A.P. then x equals.

A

log34\log _ { 3 } 4

B

1log341 - \log _ { 3 } 4

C

1log431 - \log _ { 4 } 3

D

log43\log _ { 4 } 3

Answer

1log341 - \log _ { 3 } 4

Explanation

Solution

The given number are in A.P.

2log9(31x+2)=log3(4.3x1)+1\therefore 2 \log _ { 9 } \left( 3 ^ { 1 - x } + 2 \right) = \log _ { 3 } \left( 4.3 ^ { x } - 1 \right) + 1

22log3(31x+2)=log3[3(4.3x1)]\frac { 2 } { 2 } \log _ { 3 } \left( 3 ^ { 1 - x } + 2 \right) = \log _ { 3 } \left[ 3 \left( 4.3 ^ { x } - 1 \right) \right]

31x+2=3(4.3x1)3 ^ { 1 - x } + 2 = 3 \left( 4.3 ^ { x } - 1 \right)

3y+2=12y3\frac { 3 } { y } + 2 = 12 y - 3 where y=3xy = 3 ^ { x }

12y25y3=012 y ^ { 2 } - 5 y - 3 = 0

y=13y = \frac { - 1 } { 3 } or 343x=13\frac { 3 } { 4 } \Rightarrow 3 ^ { x } = \frac { - 1 } { 3 }or 3x=343 ^ { x } = \frac { 3 } { 4 }

x=log3(3/4)x = \log _ { 3 } ( 3 / 4 ) x=1log34\Rightarrow x = 1 - \log _ { 3 } 4.