Solveeit Logo

Question

Question: If \(a , b , c\) are in A.P., then \(\frac { ( a - c ) ^ { 2 } } { \left( b ^ { 2 } - a c \right) } ...

If a,b,ca , b , c are in A.P., then (ac)2(b2ac)=\frac { ( a - c ) ^ { 2 } } { \left( b ^ { 2 } - a c \right) } =

A

1

B

2

C

3

D

4

Answer

4

Explanation

Solution

If a,b,ca , b , c are in A.P. \Rightarrow 2b=a+c2 b = a + c

So, (ac)2(b2ac)=(ac)2{(a+c2)2ac}\frac { ( a - c ) ^ { 2 } } { \left( b ^ { 2 } - a c \right) } = \frac { ( a - c ) ^ { 2 } } { \left\{ \left( \frac { a + c } { 2 } \right) ^ { 2 } - a c \right\} }

=(ac)24[a2+c2+2ac4ac]=4(ac)2(ac)2=4= \frac { ( a - c ) ^ { 2 } 4 } { \left[ a ^ { 2 } + c ^ { 2 } + 2 a c - 4 a c \right] } = \frac { 4 ( a - c ) ^ { 2 } } { ( a - c ) ^ { 2 } } = 4.

Trick : Put a=1,b=2,c=3a = 1 , b = 2 , c = 3, then the required value is 41=4\frac { 4 } { 1 } = 4.