Solveeit Logo

Question

Question: If \(x , y , z\) are in A.P. and <img src="https://cdn.pureessence.tech/canvas_632.png?top_left_x=30...

If x,y,zx , y , z are in A.P. and and tan1z\tan ^ { - 1 } z are also in A.P., then.

A

x=y=zx = y = z

B

x=y=zx = y = - z

C

x=1;y=2;z=3x = 1 ; y = 2 ; z = 3

D

x=2;y=4;z=6x = 2 ; y = 4 ; z = 6(5) x=2y=3zx = 2 y = 3 z

Answer

x=y=zx = y = z

Explanation

Solution

2tan1y=tan1x+tan12 \tan ^ { - 1 } y = \tan ^ { - 1 } x + \tan ^ { - 1 }z

tan1(2y1y2)=tan1(x+z1xz)\tan ^ { - 1 } \left( \frac { 2 y } { 1 - y ^ { 2 } } \right) = \tan ^ { - 1 } \left( \frac { x + z } { 1 - x z } \right)

2y1y2=x+z1xz\frac { 2 y } { 1 - y ^ { 2 } } = \frac { x + z } { 1 - x z }

But 2y=x+z2 y = x + z

1y2=1xz1 - y ^ { 2 } = 1 - x zy2=xzy ^ { 2 } = x z

xyz\because x y z are both in G.P. and A.P.,