Solveeit Logo

Question

Question: If <img src="https://cdn.pureessence.tech/canvas_611.png?top_left_x=0&top_left_y=1200&width=300&heig...

If be an arithmetic mean between two numbers and SS be the sum of nn arithmetic means between the same numbers, then.

A

S=nAS = n A

B

A=nSA = n S

C

A=SA = S

D

None of these

Answer

S=nAS = n A

Explanation

Solution

Let the two quantities be aa and bb and let be the nn A.M.'s between them. Then a,A1,A2.An,ba , A _ { 1 } , A _ { 2 } \ldots \ldots . A _ { n } , b are in A.P. and let dd be the common difference.

Now Tn+2=b=a+(n+21)dd=ban+1T _ { n + 2 } = b = a + ( n + 2 - 1 ) d \Rightarrow d = \frac { b - a } { n + 1 }

Also A1+A2++An=Sn+1aA _ { 1 } + A _ { 2 } + \ldots \ldots + A _ { n } = S _ { n + 1 } - a

=12(n+1)[2a+(n+11)(ba)(n+1)]a= \frac { 1 } { 2 } ( n + 1 ) \left[ 2 a + ( n + 1 - 1 ) \frac { ( b - a ) } { ( n + 1 ) } \right] - a

=n2[2a+(ba)]=n2(a+b)=n(a+b2)=nA\frac { n } { 2 } [ 2 a + ( b - a ) ] = \frac { n } { 2 } ( a + b ) = n \left( \frac { a + b } { 2 } \right) = n A.

Trick: Let 1,3,5,7,9 is in A.P. In this series

A=5,n=3,S=15A = 5 , n = 3 , S = 15S=nAS = n A .