Solveeit Logo

Question

Question: If \(l _ { 1 } , m _ { 1 } , n _ { 1 }\) and \(l _ { 2 } , m _ { 2 } , n _ { 2 }\) are the direction...

If l1,m1,n1l _ { 1 } , m _ { 1 } , n _ { 1 } and l2,m2,n2l _ { 2 } , m _ { 2 } , n _ { 2 } are the direction cosines of two perpendicular lines, then the direction cosine of the line which is perpendicular to both the lines, will be

A

(m1n2m2n1),(n1l2n2l1),(l1m2l2m1)\left( m _ { 1 } n _ { 2 } - m _ { 2 } n _ { 1 } \right) , \left( n _ { 1 } l _ { 2 } - n _ { 2 } l _ { 1 } \right) , \left( l _ { 1 } m _ { 2 } - l _ { 2 } m _ { 1 } \right)

B

(l1l2m1m2),(m1m2n1n2),(n1n2l1l2)\left( l _ { 1 } l _ { 2 } - m _ { 1 } m _ { 2 } \right) , \left( m _ { 1 } m _ { 2 } - n _ { 1 } n _ { 2 } \right) , \left( n _ { 1 } n _ { 2 } - l _ { 1 } l _ { 2 } \right)

C

1l12+m12+n12,1l22+m22+n22,13\frac { 1 } { \sqrt { l _ { 1 } ^ { 2 } + m _ { 1 } ^ { 2 } + n _ { 1 } ^ { 2 } } } , \frac { 1 } { \sqrt { l _ { 2 } ^ { 2 } + m _ { 2 } ^ { 2 } + n _ { 2 } ^ { 2 } } } , \frac { 1 } { \sqrt { 3 } }

D

13,13,13\frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } } , \frac { 1 } { \sqrt { 3 } }

Answer

(m1n2m2n1),(n1l2n2l1),(l1m2l2m1)\left( m _ { 1 } n _ { 2 } - m _ { 2 } n _ { 1 } \right) , \left( n _ { 1 } l _ { 2 } - n _ { 2 } l _ { 1 } \right) , \left( l _ { 1 } m _ { 2 } - l _ { 2 } m _ { 1 } \right)

Explanation

Solution

Let lines are l1x+m1y+n1z+d=0l _ { 1 } x + m _ { 1 } y + n _ { 1 } z + d = 0 …..(i)

and l2x+m2y+n2z+d=0l _ { 2 } x + m _ { 2 } y + n _ { 2 } z + d = 0 .....(ii)

If lx+my+nz+d=0l x + m y + n z + d = 0 is perpendicular to (i) and (ii), then, ll1+mm1+nn1=0,ll2+mm2+nn2=0l l _ { 1 } + m m _ { 1 } + n n _ { 1 } = 0 , l l _ { 2 } + m m _ { 2 } + n n _ { 2 } = 0

lm1n2m2n1=mn1l2l1n2=nl1m2l2m1=d\Rightarrow \frac { l } { m _ { 1 } n _ { 2 } - m _ { 2 } n _ { 1 } } = \frac { m } { n _ { 1 } l _ { 2 } - l _ { 1 } n _ { 2 } } = \frac { n } { l _ { 1 } m _ { 2 } - l _ { 2 } m _ { 1 } } = d

Therefore, direction cosines are

(m1n2m2n1),(n1l2l1n2),(l1m2l2m1)\left( m _ { 1 } n _ { 2 } - m _ { 2 } n _ { 1 } \right) , \left( n _ { 1 } l _ { 2 } - l _ { 1 } n _ { 2 } \right) , \left( l _ { 1 } m _ { 2 } - l _ { 2 } m _ { 1 } \right) .