Solveeit Logo

Question

Question: If \(\mathbf { a } = \mathbf { i } + \mathbf { j } + \mathbf { k } , \mathbf { b } = \mathbf { i } +...

If a=i+j+k,b=i+j,c=i\mathbf { a } = \mathbf { i } + \mathbf { j } + \mathbf { k } , \mathbf { b } = \mathbf { i } + \mathbf { j } , \mathbf { c } = \mathbf { i } and (a×b)×c=λa+μb( \mathbf { a } \times \mathbf { b } ) \times \mathbf { c } = \lambda \mathbf { a } + \mu \mathbf { b }, then λ+μ=\lambda + \mu =

A

0

B

1

C

2

D

3

Answer

0

Explanation

Solution

(a×b)×c=λa+μb( \mathbf { a } \times \mathbf { b } ) \times \mathbf { c } = \lambda \mathbf { a } + \mu \mathbf { b }

̃ (ac)b(bc)a=λa+μb( \mathbf { a } \cdot \mathbf { c } ) \mathbf { b } - ( \mathbf { b } \cdot \mathbf { c } ) \mathbf { a } = \lambda \mathbf { a } + \mu \mathbf { b } ̃ λ=b.c\lambda = - \mathbf { b } . \mathbf { c } ,

\therefore = (ab).c( \mathbf { a } - \mathbf { b } ) . \mathbf { c } = {(i+j+k)(i+j)}.i\{ ( \mathbf { i } + \mathbf { j } + \mathbf { k } ) - ( \mathbf { i } + \mathbf { j } ) \} . \mathbf { i }

=