Solveeit Logo

Question

Question: If \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) are non-coplanar vectors and \(\lambda\) is a r...

If a,b,c\mathbf { a } , \mathbf { b } , \mathbf { c } are non-coplanar vectors and λ\lambda is a real number, then the vectors a+2b+3c,λb+4c\mathbf { a } + 2 \mathbf { b } + 3 \mathbf { c } , \lambda \mathbf { b } + 4 \mathbf { c } and (2λ1)c( 2 \lambda - 1 ) \mathbf { c }are non-coplanar for

A

No value of λ\lambda

B

All except one value ofλ\lambda

C

All except two values of λ\lambda

D

All values of λ\lambda

Answer

All except two values of λ\lambda

Explanation

Solution

As a,b,c\mathbf { a } , \mathbf { b } , \mathbf { c } are non-coplanar vectors. \therefore

Now, a+2b+3c,λb+4c\mathbf { a } + 2 \mathbf { b } + 3 \mathbf { c } , \lambda \mathbf { b } + 4 \mathbf { c } and (2λ1)c( 2 \lambda - 1 ) \mathbf { c } will be non-coplanar(a+2b+3c){(λb+4c)×(2λ1)c}0( \mathbf { a } + 2 \mathbf { b } + 3 \mathbf { c } ) \cdot \{ ( \lambda \mathbf { b } + 4 \mathbf { c } ) \times ( 2 \lambda - 1 ) \mathbf { c } \} \neq 0i.e., i.e., λ(2λ1)[abc]0\lambda ( 2 \lambda - 1 ) [ \mathbf { a } \mathbf { b } \mathbf { c } ] \neq 0

\therefore λ0,12\lambda \neq 0 , \frac { 1 } { 2 }

Thus, given vectors will be non-coplanar for all values of λ\lambda except two values: λ=0\lambda = 0 and 12\frac { 1 } { 2 }