Solveeit Logo

Question

Question: If <img src="https://cdn.pureessence.tech/canvas_10.png?top_left_x=237&top_left_y=1155&width=180&hei...

If and are two non-collinear vectors such that . (b+c)( \vec { b } + \vec { c } ) = 4&× (b×c)( \vec { b } \times \vec { c } ) = (x2 – 2x + 6) + (siny) , then the point (x, y) lies on

A

x = 1

B

y = 1

C

y = p

D

x + y = 0

Answer

x = 1

Explanation

Solution

ab+ac\vec { a } \cdot \vec { b } + \vec { a } \cdot \vec { c } = 4 ……..(i) &

= (x2 – 2x + 6) b\overrightarrow { \mathrm { b } } + (siny) c\overrightarrow { \mathrm { c } } Q b\overrightarrow { \mathrm { b } } &are non-collinear vectors

Ž= x2 – 2x + 6 & ab\vec { a } \cdot \vec { b } = – siny putting in (i) we get

x2 – 2x + 6 – siny = 4

Ž (x – 1)2 + (1 – siny) = 0 \ x = 1 & siny = 1