Solveeit Logo

Question

Question: If \(\mathbf { p } = \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k }\) and \(\mathbf { q } = 3 \ma...

If p=i2j+3k\mathbf { p } = \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } and q=3i+j+2k\mathbf { q } = 3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k } then a vector along r which is linear combination of p and q and also perpendicular to q is

A

i+5j4k\mathbf { i } + 5 \mathbf { j } - 4 \mathbf { k }

B

i5j+4k\mathbf { i } - 5 \mathbf { j } + 4 \mathbf { k }

C

12(i+5j4k)- \frac { 1 } { 2 } ( \mathbf { i } + 5 \mathbf { j } - 4 \mathbf { k } )

D

None of these

Answer

12(i+5j4k)- \frac { 1 } { 2 } ( \mathbf { i } + 5 \mathbf { j } - 4 \mathbf { k } )

Explanation

Solution

r=p+λqrq=pq+λqq\mathbf { r } = \mathbf { p } + \lambda \mathbf { q } \Rightarrow \mathbf { r } \cdot \mathbf { q } = \mathbf { p } \cdot \mathbf { q } + \lambda \mathbf { q } \cdot \mathbf { q }

0=7+14λλ=12\Rightarrow 0 = 7 + 14 \lambda \Rightarrow \lambda = - \frac { 1 } { 2 }

Therefore, r=12(i+5j4k)\mathbf { r } = - \frac { 1 } { 2 } ( \mathbf { i } + 5 \mathbf { j } - 4 \mathbf { k } )