Solveeit Logo

Question

Question: If \(| \mathbf { a } + \mathbf { b } | > | \mathbf { a } - \mathbf { b } |\) then the angle between ...

If a+b>ab| \mathbf { a } + \mathbf { b } | > | \mathbf { a } - \mathbf { b } | then the angle between a and b is

A

Acute

B

Obtuse

C

π2\frac { \pi } { 2 }

D

π\pi

Answer

Acute

Explanation

Solution

a+b>ab| \mathbf { a } + \mathbf { b } | > | \mathbf { a } - \mathbf { b } |

Squaring both sides, we get

a2+b2+2ab>a2+b22aba ^ { 2 } + b ^ { 2 } + 2 \mathbf { a } \cdot \mathbf { b } > a ^ { 2 } + b ^ { 2 } - 2 \mathbf { a } \cdot \mathbf { b }

cosθ>0\cos \theta > 0. Hence θ<90\theta < 90 ^ { \circ }, (acute).