Solveeit Logo

Question

Question: If \(| \mathbf { a } | + | \mathbf { b } | = | \mathbf { c } |\) and \(\mathbf { a } + \mathbf { b }...

If a+b=c| \mathbf { a } | + | \mathbf { b } | = | \mathbf { c } | and a+b=c\mathbf { a } + \mathbf { b } = \mathbf { c } then the angle between a and b is

A

π2\frac { \pi } { 2 }

B

π\pi

C

0

D

None of these

Answer

0

Explanation

Solution

a+b=ca2+b2+2ab=c2\mathbf { a } + \mathbf { b } = \mathbf { c } \Rightarrow | \mathbf { a } | ^ { 2 } + | \mathbf { b } | ^ { 2 } + 2 \mathbf { a } \cdot \mathbf { b } = | \mathbf { c } | ^ { 2 }

and a+b=c| \mathbf { a } | + | \mathbf { b } | = | \mathbf { c } | a2+b2+2ab=c2\Rightarrow | \mathbf { a } | ^ { 2 } + | \mathbf { b } | ^ { 2 } + 2 | \mathbf { a } \| \mathbf { b } | = | \mathbf { c } | ^ { 2 }

θ=0\theta = 0