Solveeit Logo

Question

Question: If <img src="https://cdn.pureessence.tech/canvas_486.png?top_left_x=1616&top_left_y=1326&width=300&h...

If and 2i+5j+7k2 \mathbf { i } + 5 \mathbf { j } + 7 \mathbf { k } are the position vectors of the vertices A, B and C respectively of triangle ABC. The position vector of the point where the bisector of angle A meets BC is

A

13(6i+13j+18k)\frac { 1 } { 3 } ( 6 \mathbf { i } + 13 \mathbf { j } + 18 \mathbf { k } )

B
C

13(6i8j9k)\frac { 1 } { 3 } ( - 6 \mathbf { i } - 8 \mathbf { j } - 9 \mathbf { k } )

D

23(6i12j+8k)\frac { 2 } { 3 } ( - 6 \mathbf { i } - 12 \mathbf { j } + 8 \mathbf { k } )

Answer

13(6i+13j+18k)\frac { 1 } { 3 } ( 6 \mathbf { i } + 13 \mathbf { j } + 18 \mathbf { k } )

Explanation

Solution

Let the bisector of angle A meets BC at D, then AD divides BC in the ratio AB: AC

∴ Position vectors of D

=AB(2i+5j+7k)+AC(2i+3j+4k)AB+AC\frac { | \overrightarrow { A B } | ( 2 \mathbf { i } + 5 \mathbf { j } + 7 \mathbf { k } ) + | \overrightarrow { A C } | ( 2 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } ) } { | \overrightarrow { A B } | + | \overrightarrow { A C } | }

Here, and AC=2i2jk=3| \overrightarrow { A C } | = - 2 \mathbf { i } - 2 \mathbf { j } - \mathbf { k } \mid = 3

∴ Position vector of D=6(2i+5j+7k)+3(2i+3j+4k)6+3D = \frac { 6 ( 2 \mathbf { i } + 5 \mathbf { j } + 7 \mathbf { k } ) + 3 ( 2 \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } ) } { 6 + 3 }

=18i+39j+54k)9= \frac { 18 \mathbf { i } + 39 \mathbf { j } + 54 \mathbf { k } ) } { 9 } =13(6i+13j+18k)= \frac { 1 } { 3 } ( 6 \mathbf { i } + 13 \mathbf { j } + 18 \mathbf { k } ).