Question
Question: If <img src="https://cdn.pureessence.tech/canvas_486.png?top_left_x=1616&top_left_y=1326&width=300&h...
If and 2i+5j+7k are the position vectors of the vertices A, B and C respectively of triangle ABC. The position vector of the point where the bisector of angle A meets BC is
A
31(6i+13j+18k)
B

C
31(−6i−8j−9k)
D
32(−6i−12j+8k)
Answer
31(6i+13j+18k)
Explanation
Solution
Let the bisector of angle A meets BC at D, then AD divides BC in the ratio AB: AC
∴ Position vectors of D
=∣AB∣+∣AC∣∣AB∣(2i+5j+7k)+∣AC∣(2i+3j+4k)
Here, and ∣AC∣=−2i−2j−k∣=3
∴ Position vector of D=6+36(2i+5j+7k)+3(2i+3j+4k)
=918i+39j+54k) =31(6i+13j+18k).