Solveeit Logo

Question

Question: If \(u = a _ { 1 } x + b _ { 1 } y + c _ { 1 } = 0\) \(v = a _ { 2 } x + b _ { 2 } y + c _ { 2 } = 0...

If u=a1x+b1y+c1=0u = a _ { 1 } x + b _ { 1 } y + c _ { 1 } = 0 v=a2x+b2y+c2=0v = a _ { 2 } x + b _ { 2 } y + c _ { 2 } = 0 and

a1a2=b1b2=c1c2\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } } then the curve u+kv=0u + k v = 0is.

A

The same straight line u

B

Different straight line

C

It is not a straight line

D

None of these

Answer

The same straight line u

Explanation

Solution

u=a1x+b1y+c1=0,v=a2x+b2y+c2=0u = a _ { 1 } x + b _ { 1 } y + c _ { 1 } = 0 , v = a _ { 2 } x + b _ { 2 } y + c _ { 2 } = 0

and a1a2=b1b2=c1c2=c\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } } = c (Let)

a2=a1c,b2=b1c,c2=c1ca _ { 2 } = \frac { a _ { 1 } } { c } , b _ { 2 } = \frac { b _ { 1 } } { c } , c _ { 2 } = \frac { c _ { 1 } } { c }

Given that u+kv=0u + k v = 0

a1x+b1y+c1+k(a2x+b2y+c2)=0a _ { 1 } x + b _ { 1 } y + c _ { 1 } + k \left( a _ { 2 } x + b _ { 2 } y + c _ { 2 } \right) = 0

a1x+b1y+c1+ka1cx+kb1cy+kc1c=0a _ { 1 } x + b _ { 1 } y + c _ { 1 } + k \frac { a _ { 1 } } { c } x + k \frac { b _ { 1 } } { c } y + k \frac { c _ { 1 } } { c } = 0

a1x(1+kc)+b1y(1+kc)+c1(1+kc)=0a _ { 1 } x \left( 1 + \frac { k } { c } \right) + b _ { 1 } y \left( 1 + \frac { k } { c } \right) + c _ { 1 } \left( 1 + \frac { k } { c } \right) = 0

a1x+b1y+c1=0=ua _ { 1 } x + b _ { 1 } y + c _ { 1 } = 0 = u.