Question
Question: If \(u = a _ { 1 } x + b _ { 1 } y + c _ { 1 } = 0\) \(v = a _ { 2 } x + b _ { 2 } y + c _ { 2 } = 0...
If u=a1x+b1y+c1=0 v=a2x+b2y+c2=0 and
a2a1=b2b1=c2c1 then the curve u+kv=0is.
A
The same straight line u
B
Different straight line
C
It is not a straight line
D
None of these
Answer
The same straight line u
Explanation
Solution
u=a1x+b1y+c1=0,v=a2x+b2y+c2=0
and a2a1=b2b1=c2c1=c (Let)
⇒ a2=ca1,b2=cb1,c2=cc1
Given that u+kv=0
⇒ a1x+b1y+c1+k(a2x+b2y+c2)=0
⇒ a1x+b1y+c1+kca1x+kcb1y+kcc1=0
⇒ a1x(1+ck)+b1y(1+ck)+c1(1+ck)=0
⇒ a1x+b1y+c1=0=u.