Question
Question: If \(y = a x ^ { n + 1 } + b x ^ { - n }\) then \(x ^ { 2 } \frac { d ^ { 2 } y } { d x ^ { 2 } }\) ...
If y=axn+1+bx−n then x2dx2d2y equals to
A
n(n−1)y
B
n(n+1)y
C
ny
D
n2y
Answer
n(n+1)y
Explanation
Solution
y=axn+1+bx−n
Differentiate with respect to x
dxdy=a(n+1)xn−bnx−n−1
Again differentiate,
dx2d2y=an(n+1)xn−1+bn(n+1)x−n−2
⇒ x2dx2d2y=an(n+1)xn+1+bn(n+1)x−n
⇒ x2dx2d2y=n(n+1)y.