Question
Question: If I(m, n) = \(\int_{0}^{1}{t^{m}(1 + t)^{n}dt}\), then the expression for I(m, n) in terms of I(m +...
If I(m, n) = ∫01tm(1+t)ndt, then the expression for I(m, n) in terms of I(m + 1, n – 1) is
A
m+12n−m+1nI(m+1,n−1)
B
m+1nI(m+1,n−1)
C
m+12n+m+1nI(m+1,n−1)
D
n+1mI(m+1,n−1)
Answer
m+12n−m+1nI(m+1,n−1)
Explanation
Solution
I(m , n) = ∫01tm(1+t)ndt = (1 + t)n
m+1tm+101−∫01n(1+t)n−1m+1tm+1dt
= m+12n−m+1nI(m+1,n−1).