Solveeit Logo

Question

Mathematics Question on Sequence and series

If If n=(2020)n =(2020), then 1log2n+1log3n+1log4n+............+1log2020n\frac {1}{\log_2n}+\frac {1}{\log_3n}+\frac {1}{\log_4n}+............+\frac {1}{\log_{2020} n}

A

0

B

2020

C

1

D

2020\angle {2020}

Answer

1

Explanation

Solution

1log2n+1log3n+1log4n++1log2020n\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots+\frac{1}{\log _{2020} n} =logn2+logn3+logn4++logn2020=\log _{n} 2+\log _{n} 3+\log _{n} 4+\ldots+\log _{n} 2020 =logn(2×3×4××2020)=\log _{n}(2 \times 3 \times 4 \times \ldots \times 2020) =log(2020)1(2020)!(n=2020!=\log _{(2020) 1}(2020) ! \,\,\,\,\, (\because n=2020 ! given )) =1=1