Solveeit Logo

Question

Question: If \(I_{n} = \int_{}^{}{(\log x)^{n}dx,}\) then \(I_{n} + nI_{n - 1} =\)...

If In=(logx)ndx,I_{n} = \int_{}^{}{(\log x)^{n}dx,} then In+nIn1=I_{n} + nI_{n - 1} =

A

x(logx)nx(\log x)^{n}

B

(xlogx)n(x\log x)^{n}

C

(logx)n1(\log x)^{n - 1}

D

n(logx)nn(\log x)^{n}

Answer

x(logx)nx(\log x)^{n}

Explanation

Solution

In=(logx)ndxI_{n} = \int_{}^{}{(\log x)^{n}dx}, In1=(logx)n1dx\therefore I_{n - 1} = \int_{}^{}{(\log x)^{n - 1}}dx

Now In=(logx)n.1dx=(logx)n.xn(logx)n1.1x.xdx=(logx)n.xn(logx)n1dxI_{n} = \int_{}^{}{(\log x)^{n}.1dx} = (\log x)^{n}.x - n\int_{}^{}{(\log x)^{n - 1}.\frac{1}{x}.xdx} = (\log x)^{n}.x - n\int_{}^{}{(\log x)^{n - 1}dx}

In=x(logx)nnIn1I_{n} = x(\log x)^{n} - nI_{n - 1} In+nIn1=x(logx)n\therefore I_{n} + nI_{n - 1} = x(\log x)^{n}