Question
Question: If \(I_{n} = \int_{}^{}{(\log x)^{n}dx,}\) then \(I_{n} + nI_{n - 1} =\)...
If In=∫(logx)ndx, then In+nIn−1=
A
x(logx)n
B
(xlogx)n
C
(logx)n−1
D
n(logx)n
Answer
x(logx)n
Explanation
Solution
In=∫(logx)ndx, ∴In−1=∫(logx)n−1dx
Now In=∫(logx)n.1dx=(logx)n.x−n∫(logx)n−1.x1.xdx=(logx)n.x−n∫(logx)n−1dx
In=x(logx)n−nIn−1 ∴In+nIn−1=x(logx)n