Question
Question: If \(I_{n} = \int_{}^{}\frac{\sin nx}{\sin x}dx,\) where \(n > 1,\) then \(I_{n} - I_{n - 2} =\)...
If In=∫sinxsinnxdx, where n>1, then In−In−2=
A
(n−1)2cos(n−1)x
B
n−12sin(n−1)x
C
n2cosnx
D
n2sinnx
Answer
n−12sin(n−1)x
Explanation
Solution
In=∫sinxsinnxdx
In−2=∫sinxsin(n−2)xdx⇒In−In−2=∫sinxsinnx−sin(n−2)xdx =∫sinx2cos(n−1)x.sinxdx
In−In−2=(n−1)2sin(n−1)x