Solveeit Logo

Question

Question: If \(I_{n} = \int_{}^{}\frac{\sin nx}{\sin x}dx,\) where \(n > 1,\) then \(I_{n} - I_{n - 2} =\)...

If In=sinnxsinxdx,I_{n} = \int_{}^{}\frac{\sin nx}{\sin x}dx, where n>1,n > 1, then InIn2=I_{n} - I_{n - 2} =

A

2(n1)cos(n1)x\frac{2}{(n - 1)}\cos(n - 1)x

B

2n1sin(n1)x\frac{2}{n - 1}\sin(n - 1)x

C

2ncosnx\frac{2}{n}\cos nx

D

2nsinnx\frac{2}{n}\sin nx

Answer

2n1sin(n1)x\frac{2}{n - 1}\sin(n - 1)x

Explanation

Solution

In=sinnxsinxdxI_{n} = \int_{}^{}\frac{\sin nx}{\sin x}dx

In2=sin(n2)xsinxdxInIn2=sinnxsin(n2)xsinxdxI_{n - 2} = \int_{}^{}{\frac{\sin(n - 2)x}{\sin x}dx} \Rightarrow I_{n} - I_{n - 2} = \int_{}^{}{\frac{\sin nx - \sin(n - 2)x}{\sin x}dx} =2cos(n1)x.sinxsinxdx= \int_{}^{}{\frac{2\cos(n - 1)x.\sin x}{\sin x}dx}

InIn2=2sin(n1)x(n1)I_{n} - I_{n - 2} = \frac{2\sin(n - 1)x}{(n - 1)}