Question
Question: If \(I_{n} = \int_{0}^{\pi/4}{\tan^{n}xdx,n \in N,}\) then \(I_{n + 2} + I_{n}equals\)...
If In=∫0π/4tannxdx,n∈N, then In+2+Inequals
A
n1
B
n−11
C
n+11
D
n+21
Answer
n+11
Explanation
Solution
We have,
In+2+In=∫0π/4tann+2xdx+∫0π/4tannxdx=∫0π/4tannx(1+tan2x)dx=∫0π/4tannxsec2xdx= ∫01tndt,wheret=tanx
= n+11