Question
Question: If $I_n = \int_0^{\pi/4} \tan^n \theta d\theta$, then $I_8 + I_6$ equals...
If In=∫0π/4tannθdθ, then I8+I6 equals

A
41
B
51
C
61
D
71
Answer
71
Explanation
Solution
Let the given integral be In=∫0π/4tannθdθ. We want to find the value of I8+I6.
Consider the sum In+In−2 for n≥2:
In+In−2=∫0π/4tannθdθ+∫0π/4tann−2θdθ
In+In−2=∫0π/4(tannθ+tann−2θ)dθ
In+In−2=∫0π/4tann−2θ(tan2θ+1)dθ
Using the identity tan2θ+1=sec2θ, we get:
In+In−2=∫0π/4tann−2θsec2θdθ
Let u=tanθ. Then du=sec2θdθ. When θ=0, u=tan0=0. When θ=π/4, u=tan(π/4)=1.
The integral becomes:
In+In−2=∫01un−2du=[n−1un−1]01=n−11 for n≥2.
We need to find I8+I6. This fits the form In+In−2 with n=8.
Using the reduction formula with n=8:
I8+I8−2=I8+I6=8−11=71.
Thus, I8+I6=71.