Solveeit Logo

Question

Question: If $I_n = \int_0^{\pi/4} \tan^n \theta d\theta$, then $I_8 + I_6$ equals...

If In=0π/4tannθdθI_n = \int_0^{\pi/4} \tan^n \theta d\theta, then I8+I6I_8 + I_6 equals

A

14\frac{1}{4}

B

15\frac{1}{5}

C

16\frac{1}{6}

D

17\frac{1}{7}

Answer

17\frac{1}{7}

Explanation

Solution

Let the given integral be In=0π/4tannθdθI_n = \int_0^{\pi/4} \tan^n \theta d\theta. We want to find the value of I8+I6I_8 + I_6.

Consider the sum In+In2I_n + I_{n-2} for n2n \ge 2:

In+In2=0π/4tannθdθ+0π/4tann2θdθI_n + I_{n-2} = \int_0^{\pi/4} \tan^n \theta d\theta + \int_0^{\pi/4} \tan^{n-2} \theta d\theta

In+In2=0π/4(tannθ+tann2θ)dθI_n + I_{n-2} = \int_0^{\pi/4} (\tan^n \theta + \tan^{n-2} \theta) d\theta

In+In2=0π/4tann2θ(tan2θ+1)dθI_n + I_{n-2} = \int_0^{\pi/4} \tan^{n-2} \theta (\tan^2 \theta + 1) d\theta

Using the identity tan2θ+1=sec2θ\tan^2 \theta + 1 = \sec^2 \theta, we get:

In+In2=0π/4tann2θsec2θdθI_n + I_{n-2} = \int_0^{\pi/4} \tan^{n-2} \theta \sec^2 \theta d\theta

Let u=tanθu = \tan \theta. Then du=sec2θdθdu = \sec^2 \theta d\theta. When θ=0\theta = 0, u=tan0=0u = \tan 0 = 0. When θ=π/4\theta = \pi/4, u=tan(π/4)=1u = \tan (\pi/4) = 1.

The integral becomes:

In+In2=01un2du=[un1n1]01=1n1I_n + I_{n-2} = \int_0^1 u^{n-2} du = \left[ \frac{u^{n-1}}{n-1} \right]_0^1 = \frac{1}{n-1} for n2n \ge 2.

We need to find I8+I6I_8 + I_6. This fits the form In+In2I_n + I_{n-2} with n=8n=8.

Using the reduction formula with n=8n=8:

I8+I82=I8+I6=181=17I_8 + I_{8-2} = I_8 + I_6 = \frac{1}{8-1} = \frac{1}{7}.

Thus, I8+I6=17I_8 + I_6 = \frac{1}{7}.