Solveeit Logo

Question

Question: If $I_n = \int_{0}^{\pi} e^x (\sin x)^n dx$, then $5\frac{I_3}{I_1}$, is equal to __________....

If In=0πex(sinx)ndxI_n = \int_{0}^{\pi} e^x (\sin x)^n dx, then 5I3I15\frac{I_3}{I_1}, is equal to __________.

Answer

3

Explanation

Solution

To solve this problem, we need to evaluate the given definite integral In=0πex(sinx)ndxI_n = \int_{0}^{\pi} e^x (\sin x)^n dx and then find the value of 5I3I15\frac{I_3}{I_1}.

First, let's derive a reduction formula for InI_n. We will use integration by parts twice. Let In=0πex(sinx)ndxI_n = \int_{0}^{\pi} e^x (\sin x)^n dx. Apply integration by parts with u=(sinx)nu = (\sin x)^n and dv=exdxdv = e^x dx. Then du=n(sinx)n1(cosx)dxdu = n (\sin x)^{n-1} (\cos x) dx and v=exv = e^x.

In=[ex(sinx)n]0π0πexn(sinx)n1(cosx)dxI_n = \left[ e^x (\sin x)^n \right]_{0}^{\pi} - \int_{0}^{\pi} e^x n (\sin x)^{n-1} (\cos x) dx

Evaluate the boundary term: At x=πx=\pi: eπ(sinπ)n=eπ(0)n=0e^{\pi} (\sin \pi)^n = e^{\pi} (0)^n = 0 (for n1n \ge 1). At x=0x=0: e0(sin0)n=1(0)n=0e^0 (\sin 0)^n = 1 \cdot (0)^n = 0 (for n1n \ge 1). So, the boundary term [ex(sinx)n]0π=0\left[ e^x (\sin x)^n \right]_{0}^{\pi} = 0.

Therefore, In=n0πex(sinx)n1(cosx)dxI_n = - n \int_{0}^{\pi} e^x (\sin x)^{n-1} (\cos x) dx. (Equation 1)

Now, let's apply integration by parts again to the integral J=0πex(sinx)n1(cosx)dxJ = \int_{0}^{\pi} e^x (\sin x)^{n-1} (\cos x) dx. Let u=(sinx)n1cosxu' = (\sin x)^{n-1} \cos x and dv=exdxdv' = e^x dx. Then v=exv' = e^x. To find dudu', we differentiate uu' using the product rule: du=[(n1)(sinx)n2(cosx)(cosx)+(sinx)n1(sinx)]dxdu' = \left[ (n-1)(\sin x)^{n-2}(\cos x)(\cos x) + (\sin x)^{n-1}(-\sin x) \right] dx du=[(n1)(sinx)n2cos2x(sinx)n]dxdu' = \left[ (n-1)(\sin x)^{n-2}\cos^2 x - (\sin x)^n \right] dx Substitute cos2x=1sin2x\cos^2 x = 1 - \sin^2 x: du=[(n1)(sinx)n2(1sin2x)(sinx)n]dxdu' = \left[ (n-1)(\sin x)^{n-2}(1 - \sin^2 x) - (\sin x)^n \right] dx du=[(n1)(sinx)n2(n1)(sinx)n(sinx)n]dxdu' = \left[ (n-1)(\sin x)^{n-2} - (n-1)(\sin x)^n - (\sin x)^n \right] dx du=[(n1)(sinx)n2n(sinx)n]dxdu' = \left[ (n-1)(\sin x)^{n-2} - n(\sin x)^n \right] dx.

Now apply integration by parts to JJ: J=[ex(sinx)n1cosx]0π0πex[(n1)(sinx)n2n(sinx)n]dxJ = \left[ e^x (\sin x)^{n-1} \cos x \right]_{0}^{\pi} - \int_{0}^{\pi} e^x \left[ (n-1)(\sin x)^{n-2} - n(\sin x)^n \right] dx.

Evaluate the boundary term [ex(sinx)n1cosx]0π\left[ e^x (\sin x)^{n-1} \cos x \right]_{0}^{\pi}: At x=πx=\pi: eπ(sinπ)n1cosπ=eπ(0)n1(1)=0e^{\pi} (\sin \pi)^{n-1} \cos \pi = e^{\pi} (0)^{n-1} (-1) = 0 (for n11n-1 \ge 1, i.e., n2n \ge 2). At x=0x=0: e0(sin0)n1cos0=1(0)n11=0e^0 (\sin 0)^{n-1} \cos 0 = 1 \cdot (0)^{n-1} \cdot 1 = 0 (for n11n-1 \ge 1, i.e., n2n \ge 2). So, for n2n \ge 2, the boundary term is 00.

Thus, for n2n \ge 2: J=0πex[(n1)(sinx)n2n(sinx)n]dxJ = - \int_{0}^{\pi} e^x \left[ (n-1)(\sin x)^{n-2} - n(\sin x)^n \right] dx J=(n1)0πex(sinx)n2dx+n0πex(sinx)ndxJ = - (n-1) \int_{0}^{\pi} e^x (\sin x)^{n-2} dx + n \int_{0}^{\pi} e^x (\sin x)^n dx Recognize In2I_{n-2} and InI_n: J=(n1)In2+nInJ = - (n-1) I_{n-2} + n I_n.

Substitute this expression for JJ back into Equation 1: In=n[(n1)In2+nIn]I_n = - n \left[ -(n-1) I_{n-2} + n I_n \right] In=n(n1)In2n2InI_n = n(n-1) I_{n-2} - n^2 I_n.

Now, rearrange the terms to solve for InI_n: In+n2In=n(n1)In2I_n + n^2 I_n = n(n-1) I_{n-2} (1+n2)In=n(n1)In2(1+n^2) I_n = n(n-1) I_{n-2} In=n(n1)1+n2In2I_n = \frac{n(n-1)}{1+n^2} I_{n-2}.

This is the reduction formula for InI_n. We need to find 5I3I15\frac{I_3}{I_1}. Using the reduction formula for n=3n=3: I3=3(31)1+32I32I_3 = \frac{3(3-1)}{1+3^2} I_{3-2} I3=3×21+9I1I_3 = \frac{3 \times 2}{1+9} I_1 I3=610I1I_3 = \frac{6}{10} I_1 I3=35I1I_3 = \frac{3}{5} I_1.

Now, we can find the ratio I3I1\frac{I_3}{I_1}: I3I1=35\frac{I_3}{I_1} = \frac{3}{5}.

Finally, calculate 5I3I15\frac{I_3}{I_1}: 5I3I1=5×35=35\frac{I_3}{I_1} = 5 \times \frac{3}{5} = 3.

Note: We could also calculate I1I_1 explicitly, though it's not required for this specific problem. I1=0πexsinxdxI_1 = \int_{0}^{\pi} e^x \sin x dx. Using the standard integral formula eaxsin(bx)dx=eaxa2+b2(asin(bx)bcos(bx))\int e^{ax} \sin(bx) dx = \frac{e^{ax}}{a^2+b^2}(a \sin(bx) - b \cos(bx)), with a=1,b=1a=1, b=1: I1=[ex12+12(1sinx1cosx)]0πI_1 = \left[ \frac{e^x}{1^2+1^2}(1 \cdot \sin x - 1 \cdot \cos x) \right]_{0}^{\pi} I1=[ex2(sinxcosx)]0πI_1 = \left[ \frac{e^x}{2}(\sin x - \cos x) \right]_{0}^{\pi} I1=eπ2(sinπcosπ)e02(sin0cos0)I_1 = \frac{e^{\pi}}{2}(\sin \pi - \cos \pi) - \frac{e^0}{2}(\sin 0 - \cos 0) I1=eπ2(0(1))12(01)I_1 = \frac{e^{\pi}}{2}(0 - (-1)) - \frac{1}{2}(0 - 1) I1=eπ2(1)12(1)I_1 = \frac{e^{\pi}}{2}(1) - \frac{1}{2}(-1) I1=eπ2+12=eπ+12I_1 = \frac{e^{\pi}}{2} + \frac{1}{2} = \frac{e^{\pi}+1}{2}.

The final answer is 3\boxed{3}.

Explanation of the solution:

  1. Define In=0πex(sinx)ndxI_n = \int_{0}^{\pi} e^x (\sin x)^n dx.
  2. Apply integration by parts twice to InI_n to derive a recurrence relation.
    • First integration by parts: In=[ex(sinx)n]0πn0πex(sinx)n1cosxdxI_n = [e^x (\sin x)^n]_0^\pi - n \int_0^\pi e^x (\sin x)^{n-1} \cos x dx. The boundary term is zero.
    • Let J=0πex(sinx)n1cosxdxJ = \int_0^\pi e^x (\sin x)^{n-1} \cos x dx. Apply integration by parts to JJ: J=[ex(sinx)n1cosx]0π0πex[(n1)(sinx)n2n(sinx)n]dxJ = [e^x (\sin x)^{n-1} \cos x]_0^\pi - \int_0^\pi e^x [(n-1)(\sin x)^{n-2} - n(\sin x)^n] dx. The boundary term is zero for n2n \ge 2.
    • Substitute JJ back into the expression for InI_n: In=n[(n1)In2+nIn]I_n = -n [-(n-1)I_{n-2} + nI_n].
  3. Simplify the recurrence relation: (1+n2)In=n(n1)In2(1+n^2)I_n = n(n-1)I_{n-2}, which gives In=n(n1)1+n2In2I_n = \frac{n(n-1)}{1+n^2}I_{n-2}.
  4. Use the recurrence relation for n=3n=3: I3=3(31)1+32I1=610I1=35I1I_3 = \frac{3(3-1)}{1+3^2}I_1 = \frac{6}{10}I_1 = \frac{3}{5}I_1.
  5. Calculate the required expression: 5I3I1=5×35I1I1=5×35=35\frac{I_3}{I_1} = 5 \times \frac{\frac{3}{5}I_1}{I_1} = 5 \times \frac{3}{5} = 3.