Question
Question: If \(I_{n} = \int_{0}^{\infty}{e^{- x}x^{n - 1}dx,}\) then \(\int_{0}^{\infty}e^{- \lambda x}x^{n - ...
If In=∫0∞e−xxn−1dx, then ∫0∞e−λxxn−1dx is equal to
A
λIn
B
λ1In
C
λnIn
D
λnIn
Answer
λnIn
Explanation
Solution
Put, λx=t, λdx=dt, we get,
∫0∞e−λxxn−1dx=λn1∫0∞e−ttn−1dt =λn1∫0∞e−xxn−1dx=λnIn